

Language: Italian

Day: **2**

Aprile 2020

Problema 4. Una permutazione degli interi 1, 2, ..., m si dice pura se non esiste nessun intero positivo k < m tale che i primi k numeri della permutazione siano 1, 2, ..., k in un qualche ordine. Sia f_m il numero di permutazioni pure degli interi 1, 2, ..., m.

Dimostrare che $f_n \ge n \cdot f_{n-1}$ per ogni $n \ge 3$.

Per esempio, se m=4, allora la permutazione (3,1,4,2) è pura, mentre la permutazione (2,3,1,4) non lo è.

Problema 5. Sia ABC un triangolo tale che $\angle BCA > 90^{\circ}$. La circonferenza Γ circoscritta al triangolo ABC ha raggio R. Esiste un punto P interno al segmento AB tale che PB = PC e la lunghezza di PA è R. L'asse di PB interseca Γ nei punti D e E.

Dimostrare che P è l'incentro del triangolo CDE.

Problema 6. Sia m > 1 un intero. Sia a_1, a_2, a_3, \ldots una successione definita da $a_1 = a_2 = 1, a_3 = 4$, e, per ogni $n \ge 4$,

$$a_n = m(a_{n-1} + a_{n-2}) - a_{n-3}.$$

Determinare tutti gli interi m per cui ogni termine della successione è un quadrato.

Language: Italian Tempo concesso: 4 ore e 30 minuti Ogni problema vale 7 punti

Per rendere la gara equa e divertente per tutte, non parlare dei problemi su internet o sui social media fino a domenica 18 aprile alle 23.59.