

Language: English

Day: **2**

April 2020

Problem 4. A permutation of the integers $1, 2, \ldots, m$ is called *fresh* if there exists no positive integer k < m such that the first k numbers in the permutation are $1, 2, \ldots, k$ in some order. Let f_m be the number of fresh permutations of the integers $1, 2, \ldots, m$.

Prove that $f_n \ge n \cdot f_{n-1}$ for all $n \ge 3$.

For example, if m = 4, then the permutation (3, 1, 4, 2) is fresh, whereas the permutation (2, 3, 1, 4) is not.

Problem 5. Consider the triangle ABC with $\angle BCA > 90^{\circ}$. The circumcircle Γ of ABC has radius R. There is a point P in the interior of the line segment AB such that PB = PC and the length of PA is R. The perpendicular bisector of PB intersects Γ at the points D and E.

Prove that P is the incentre of triangle CDE.

Problem 6. Let m > 1 be an integer. A sequence a_1, a_2, a_3, \ldots is defined by $a_1 = a_2 = 1$, $a_3 = 4$, and for all $n \ge 4$,

$$a_n = m(a_{n-1} + a_{n-2}) - a_{n-3}.$$

Determine all integers m such that every term of the sequence is a square.

Language: English

Time: 4 hours and 30 minutes
Each problem is worth 7 points

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Saturday 18 April, 22:00 UTC (15:00 Pacific Daylight Time, 23:00 British Summer Time, 08:00 (Sunday) Australian Eastern Standard Time).