Problem 4. A permutation of the integers $1,2, \ldots, m$ is called fresh if there exists no positive integer $k<m$ such that the first k numbers in the permutation are $1,2, \ldots, k$ in some order. Let f_{m} be the number of fresh permutations of the integers $1,2, \ldots, m$.

Prove that $f_{n} \geq n \cdot f_{n-1}$ for all $n \geq 3$.
For example, if $m=4$, then the permutation $(3,1,4,2)$ is fresh, whereas the permutation $(2,3,1,4)$ is not.

Problem 5. Consider the triangle $A B C$ with $\angle B C A>90^{\circ}$. The circumcircle Γ of $A B C$ has radius R. There is a point P in the interior of the line segment $A B$ such that $P B=P C$ and the length of $P A$ is R. The perpendicular bisector of $P B$ intersects Γ at the points D and E.

Prove that P is the incentre of triangle $C D E$.
Problem 6. Let $m>1$ be an integer. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=a_{2}=1, a_{3}=4$, and for all $n \geq 4$,

$$
a_{n}=m\left(a_{n-1}+a_{n-2}\right)-a_{n-3} .
$$

Determine all integers m such that every term of the sequence is a square.

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Saturday 18 April, 22:00 UTC (15:00 Pacific Daylight Time, 23:00 British Summer Time, 08:00 (Sunday) Australian Eastern Standard Time).

