
Day 1. Solutions

Problem 1 (Netherlands). Find all triples (a, b, c) of real numbers such that ab+ bc+
ca = 1 and

a2b+ c = b2c+ a = c2a+ b.

Solution 1. First suppose that a = 0. Then we have bc = 1 and c = b2c = b. So b = c,
which implies b2 = 1 and hence b = ±1. This leads to the solutions (a, b, c) = (0, 1, 1)
and (a, b, c) = (0,−1,−1). Similarly, b = 0 gives the solutions (a, b, c) = (1, 0, 1) and
(a, b, c) = (−1, 0,−1), while c = 0 gives (a, b, c) = (1, 1, 0) and (a, b, c) = (−1,−1, 0).

Now we may assume that a, b, c 6== 0. We multiply ab + bc + ca = 1 by a to find
a2b+abc+ ca2 = a, hence a2b = a−abc−a2c. Substituting this in a2b+ c = b2c+a yields
a− abc− a2c+ c = b2c+ a, so b2c+ abc+ a2c = c. As c 6== 0, we find b2 + ab+ a2 = 1.

Analogously we have b2 + bc+ c2 = 1 and a2 + ac+ c2 = 1. Adding these three equations
yields 2 (a2 + b2 + c2) + ab+ bc+ ca = 3, which implies a2 + b2 + c2 = 1. Combining this
result with b2 + ab+ a2 = 1, we get 1− ab = 1− c2, so c2 = ab.

Analogously we also have b2 = ac and a2 = bc. In particular we now have that ab, bc and
ca are all positive. This means that a, b and c must all be positive or all be negative.
Now assume that |c| is the largest among |a|, |b| and |c|, then c2 ≥ |ab| = ab = c2, so we
must have equality. This means that |c| = |a| and |c| = |b|. Since (a, b, c) must all have
the same sign, we find a = b = c. Now we have 3a2 = 1, hence a = ±1
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We conclude that all possible triples (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1),
(1, 1, 0), (−1,−1, 0),
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Solution 2. From the problem statement ab = 1− bc− ca and thus b2c+ a = a2b+ c =
a−abc−a2c+ c, c (b2 + a2 + ab− 1) = 0. If c = 0 then ab = 1 and a2b = b, which implies
a = b = ±1. Otherwise b2 + a2 + ab = 1. Cases a = 0 and b = 0 are completely analogous
to c = 0, so we may suppose that a, b, c 6= 0. In this case we end up with

a2 + b2 + ab = 1,

b2 + c2 + bc = 1,

c2 + a2 + ca = 1,

ab+ bc+ ca = 1.

Adding first three equations and subtracting the fourth yields 2(a2 + b2 + c2) = 2 =
2(ab + bc + ca). Consequently, (a − b)2 + (b − c)2 + (c − a)2 = 0. Now we can easily
conclude that a = b = c = ± 1√

3
.

Solution by Achilleas Sinefakopoulos, Greece. We have

c(1− b2) = a(1− ab) = a(bc+ ca) = c(ab+ a2),

and so
c(a2 + ab+ b2 − 1) = 0.

Similarly, we have

b(a2 + ac+ c2 − 1) = 0 and a(b2 + bc+ c2 − 1) = 0.
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If c = 0, then we get ab = 1 and a2b = a = b, which give us a = b = 1, or a = b = −1.
Similarly, if a = 0, then b = c = 1, or b = c = −1, while if b = 0, then a = c = 1, or
a = c = −1.

So assume that abc 6= 0. Then

a2 + ab+ b2 = b2 + bc+ c2 = c2 + ca+ a2 = 1.

Adding these gives us
2(a2 + b2 + c2) + ab+ bc+ ca = 3,

and using the fact that ab+ bc+ ca = 1, we get

a2 + b2 + c2 = 1 = ab+ bc+ ca.

Hence

(a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2)− 2(ab+ bc+ ca) = 0

and so a = b = c = ± 1√
3
.

Therefore, the solutions (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1), (1, 1, 0),

(−1,−1, 0), ( 1√
3
,
1√
3
,
1√
3
), (− 1√

3
,− 1√

3
,− 1√

3
)

Solution by Eirini Miliori (HEL2). It is ab+ bc+ ca = 1 and

a2b+ c = b2c+ a = c2a+ b. (1)

We have

a2b+ c = b2c+ a ⇐⇒ a2b− a = b2c− c
⇐⇒ a(ab− 1) = c(b2 − 1)

⇐⇒ a(−bc− ac) = c(b2 − 1)

⇐⇒ −ac(a+ b) = c(b2 − 1) (2)

First, consider the case where one of a, b, c is equal to 0. Without loss of generality, assume
that a = 0. Then bc = 1 and b = c from (1), and so b2 = 1 giving us b = 1 or −1. Hence
b = c = 1 or b = c = −1.

Therefore, (a, b, c) equals one of the triples (0, 1, 1), (0,−1,−1), as well as their rearrange-
ments (1, 0, 1) and (−1, 0,−1) when b = 0, or (1, 1, 0) and (−1,−1, 0) when c = 0.

Now consider the case where a 6= 0, b 6= 0 and c 6= 0. Then (2) gives us

−a(a+ b) = b2 − 1 ⇐⇒ −a2 − ab = b2 − 1 ⇐⇒ a2 + ab+ b2 − 1 = 0.

The quadratic P (x) = x2 + bx + b2 − 1 has x = a as a root. Let x1 be its second root
(which could be equal to a in the case where the discriminant is 0). From Vieta’s formulas
we get {

x1 + a = −b ⇐⇒ x1 = −b− a, and
x1a = b2 − 1 ⇐⇒ x1 =

b2−1
a
.
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Using a2b + c = c2a + b we obtain b(a2 − 1) = c(ac − 1) yielding a2 + ac + c2 − 1 = 0 in
a similar way. The quadratic Q(x) = x2 + cx + c2 − 1 has x = a as a root. Let x2 be its
second root (which could be equal to a in the case where the discriminant is 0). From
Vieta’s formulas we get {

x2 + a = −c ⇐⇒ x2 = −c− a, and
x2a = c2 − 1 ⇐⇒ x2 =

c2−1
a
.

Then {
x1 + x2 = −b− a− c− a, and
x1 + x2 =

b2−1
a

+ c2−1
a
,

which give us

−(2a+ b+ c) =
b2 − 1

a
+
c2 − 1

a
⇐⇒ −2a2 − ba− ca = b2 + c2 − 2

⇐⇒ bc− 1− 2a2 = b2 + c2 − 2

⇐⇒ 2a2 + b2 + c2 = 1 + bc. (3)

By symmetry, we get

2b2 + a2 + c2 = 1 + ac, and (4)
2c2 + a2 + b2 = 1 + bc (5)

Adding equations (3), (4), and (5), we get

4(a2 + b2 + c2) = 3 + ab+ bc+ ca ⇐⇒ 4(a2 + b2 + c2) = 4 ⇐⇒ a2 + b2 + c2 = 1.

From this and (3), since ab+ bc+ ca = 1, we get

a2 = bc = 1− ab− ac ⇐⇒ a(a+ b+ c) = 1.

Similarly, from (4) we get
b(a+ b+ c) = 1,

and from (4),
c(a+ b+ c) = 1.

Clearly, it is a+ b+ c 6= 0 (for otherwise it would be 0 = 1, a contradiction). Therefore,

a = b = c =
1

a+ b+ c
,

and so 3a2 = 1 giving us a = b = c = ± 1√
3
.

In conclusion, the solutions (a, b, c) are (0, 1, 1), (0,−1,−1), (1, 0, 1), (−1, 0,−1), (1, 1, 0),
(−1,−1, 0), ( 1√

3
,
1√
3
,
1√
3
), and (− 1√

3
,− 1√

3
,− 1√

3
).

Solution by ISR5. First, homogenize the condition a2b + c = b2c + a = c2a + b by
replacing c by c(ab+ bc+ ca) (etc.), yielding

a2b+ c = a2b+ abc+ bc2 + c2a = abc+
∑
cyc

a2b+ (c2b− b2c) = abc+
∑
cyc

a2b+ bc(c− b).
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Thus, after substracting the cyclicly symmetric part abc+
∑

cyc a
2b we find the condition

is eqivalent to
D := bc(c− b) = ca(a− c) = ab(b− a).

Ending 1. It is easy to see that if e.g. a = 0 then b = c = ±1, and if e.g. a = b then either
a = b = c = ± 1√

3
or a = b = ±1, c = 0, and these are indeed solutions. So, to show that

these are all solutions (up to symmetries), we may assume by contradiction that a, b, c
are pairwise different and non-zero. All conditions are preserved under cyclic shifts and
under simultaenously switching signs on all a, b, c, and by applying these operations as
necessary we may assume a < b < c. It follows that D3 = a2b2c2(c− b)(a− c)(b− a) must
be negative (the only negative term is a− c, hence D is negative, i.e. bc, ab < 0 < ac. But
this means that a, c have the same sign and b has a different one, which clearly contradicts
a < b < c! So, such configurations are impossible.

Ending 2. Note that 3D =
∑
c2b −

∑
b2c = (c − b)(c − a)(b − a) and D3 = a2b2c2(c −

b)(a− c)(b− a) = −3a2b2c2D. Since 3D and D3 must have the same sign, and −3a2b2c2
is non-positive, necessarily D = 0. Thus (up to cyclic permutation) a = b and from there
we immediately find either a = b = ±1, c = 0 or a = b = c = ± 1√

3
.
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Problem 2 (Luxembourg). Let n be a positive integer. Dominoes are placed on a
2n × 2n board in such a way that every cell of the board is adjacent to exactly one cell
covered by a domino. For each n, determine the largest number of dominoes that can be
placed in this way.

(A domino is a tile of size 2 × 1 or 1 × 2. Dominoes are placed on the board in such a
way that each domino covers exactly two cells of the board, and dominoes do not overlap.
Two cells are said to be adjacent if they are different and share a common side.)

Solution 1. Let M denote the maximal number of dominoes that can be placed on the
chessboard. We claim that M = n(n + 1)/2. The proof naturally splits into two parts:
we first prove that n(n+ 1)/2 dominoes can be placed on the board, and then show that
M ≤ n(n+ 1)/2 to complete the proof.

We construct placings of the dominoes by induction. The base cases n = 1 and n = 2
correspond to the placings

and

Next, we add dominoes to the border of a 2n × 2n chessboard to obtain a placing of
dominoes for the 2(n+ 2)× 2(n+ 2) board,

or

depending on whether n is odd or even. In these constructions, the interior square is filled
with the placing for the 2n × 2n board. This construction adds 2n + 3 dominoes, and
therefore places, in total,

n(n+ 1)

2
+ (2n+ 3) =

(n+ 2)(n+ 3)

2

dominoes on the board. Noticing that the contour and the interior mesh together appro-
priately, this proves, by induction, that n(n + 1)/2 dominoes can be placed on the 2nn
board.

To prove thatM ≤ n(n+1)/2, we border the 2n×2n square board up to a (2n+2)×(2n+2)
square board; this adds 8n + 4 cells to the 4n2 cells that we have started with. Calling
a cell covered if it belongs to a domino or is adjacent to a domino, each domino on the
2n × 2n board is seen to cover exactly 8 cells of the (2n + 2) × (2n + 2) board (some of
which may belong to the border). By construction, each of the 4n2 cells of the 2n × 2n
board is covered by precisely one domino.
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If two adjacent cells on the border, away from a corner, are covered, then there will be at
least two uncovered cells on both sides of them; if one covered cell lies between uncovered
cells, then again, on both sides of it there will be at least two uncovered cells; three or
more adjacent cells cannot be all covered. The following diagrams, in which the borders
are shaded, ×marks an uncovered cell on the border, +marks a covered cell not belonging
to a domino, and − marks a cell which cannot belong to a domino, summarize the two
possible situations,

· · · × × + + × × · · ·
− + + −

− + + −
− −

...
...

or

· · · × × + × × · · ·
− + + −
− + + −

− + −
... − ...

Close to a corner of the board, either the corner belongs to some domino,

× + + × × · · ·
+ + −
× + + −
× − −
...

or one of the following situations, in which the corner cell of the original board is not
covered by a domino, may occur:

× × + + × × · · ·
× + + −
× + + + −
+ + −
+ + −
...

or

× × × × + + · · ·
× + + +
+ + + +
× + +
× − −
...

It is thus seen that at most half of the cells on the border, i.e. 4n+2 cells, may be covered,
and hence

M ≤
[
4n2 + (4n+ 2)

8

]
=

[
n(n+ 1)

2
+

1

2

]
=
n(n+ 1)

2
,

which completes the proof of our claim.

Solution 2. We use the same example as in Solution 1. Let M denote the maximum
number of dominoes which satisfy the condition of the problem. To prove that M ≤
n(n+ 1)/2, we again border the 2n× 2n square board up to a (2n+ 2)× (2n+ 2) square
board. In fact, we shall ignore the corner border cells as they cannot be covered anyway
and consider only the 2n border cells along each side. We prove that out of each four
border cells next to each other at most two can be covered. Suppose three out of four
cells A, B, C, D are covered. Then there are two possibilities below:

+ + × +
+

or + + + ×
+
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The first option is that A, B and D are covered (marked with + in top row). Then the
cells inside the starting square next to A, B and D are covered by the dominoes, but
the cell in between them has now two adjacent cells with dominoes, contradiction. The
second option is that A, B and C are covered. Then the cells inside the given square next
to A, B and C are covered by the dominoes. But then the cell next to B has two adjacent
cells with dominoes, contradiction.

Now we can split the border cells along one side in groups of 4 (leaving one group of 2
if n is odd). So when n is even, at most n of the 2n border cells along one side can be
covered, and when n is odd, at most n+ 1 out of the 2n border cells can be covered. For
all four borders together, this gives a contribution of 4n when n is even and 4n+ 4 when
n is odd. Adding 4n2 and dividing by 8 we get the desired result.

Solution (upper bound) by ISR5. Consider the number of pairs of adjacent cells,
such that one of them is covered by a domino. Since each cell is adjacent to one covered
cell, the number of such pairs is exactly 4n2. On the other hand, let n2 be the number
of covered corner cells, n3 the number of covered edge cells (cells with 3 neighbours), and
n4 be the number of covered interior cells (cells with 4 neighbours). Thus the number of
pairs is 2n2 + 3n3 + 4n4 = 4n2, whereas the number of dominoes is m = n2+n3+n4

2
.

Considering only the outer frame (of corner and edge cells), observe that every covered
cell dominates two others, so at most half of the cells are ccovered. The frame has a total
of 4(2n−1) cells, i.e. n2+n3 ≤ 4n−2. Additionally n2 ≤ 4 since there are only 4 corners,
thus

8m = 4n2+4n3+4n4 = (2n2+3n3+4n4)+(n2+n3)+n2 ≤ 4n2+(4n−2)+4 = 4n(n+1)+2

Thus m ≤ n(n+1)
2

+ 1
4
, so in fact m ≤ n(n+1)

2
.

Solution (upper and lower bound) by ISR5. We prove that this is the upper bound
(and also the lower bound!) by proving that any two configurations, say A and B, must
contain exactly the same number of dominoes.

Colour the board in a black and white checkboard colouring. Let W be the set of white
cells covered by dominoes of tiling A. For each cell w ∈ W let Nw be the set of its adjacent
(necessarily black) cells. Since each black cell has exactly one neighbour (necessarily
white) covered by a domino of tiling A, it follows that each black cell is contained in
exactly one Nw, i.e. the Nw form a partition of the black cells. Since each white cell has
exactly one (necessarily black) neighbour covered by a tile of B, each Bw contains exactly
one black tile covered by a domino of B. But, since each domino covers exactly one white
and one black cell, we have

|A| = |W | = |{Nw : w ∈ W}| = |B|

as claimed.
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Problem 3 (Poland). Let ABC be a triangle such that ∠CAB > ∠ABC, and let I
be its incentre. Let D be the point on segment BC such that ∠CAD = ∠ABC. Let ω
be the circle tangent to AC at A and passing through I. Let X be the second point of
intersection of ω and the circumcircle of ABC. Prove that the angle bisectors of ∠DAB
and ∠CXB intersect at a point on line BC.

Solution 1. Let S be the intersection point of BC and the angle bisector of ∠BAD, and
let T be the intersection point of BC and the angle bisector of ∠BXC. We will prove
that both quadruples A, I,B, S and A, I,B, T are concyclic, which yields S = T .

Firstly denote by M the middle of arc AB of the circumcenter of ABC which does not
contain C. Consider the circle centered atM passing through A, I and B (it is well-known
that MA = MI = MB); let it intersect BC at B and S ′. Since ∠BAC > ∠CBA it is
easy to check that S ′ lies on side BC. Denoting the angles in ABC by α, β, γ we get

∠BAD = ∠BAC − ∠DAC = α− β.

Moreover since ∠MBC = ∠MBA+ ∠ABC = γ
2
+ β, then

∠BMS ′ = 180◦ − 2∠MBC = 180◦ − γ − 2β = α− β.

It follows that ∠BAS ′ = 2∠BMS ′ = 2∠BAD which gives us S = S ′.

Secondly let N be the middle of arc BC of the circumcenter of ABC which does not
contain A. From ∠BAC > ∠CBA we conclude that X lies on the arc AB of circumcircle
of ABC not containing C. Obviously both AI and XT are passing through N . Since
∠NBT = α

2
= ∠BXN we obtain 4NBT ∼ 4NXB, therefore

NT ·NX = NB2 = NI2.

It follows that 4NTI ∼ 4NIX. Keeping in mind that ∠NBC = ∠NAC = ∠IXA we
get

∠TIN = ∠IXN = ∠NXA− ∠IXA = ∠NBA− ∠NBC = ∠TBA.

It means that A, I,B, T are concyclic which ends the proof.

Solution 2. Let ∠BAC = α, ∠ABC = β, ∠BCA = γ ∠ACX = φ. Denote by W1

and W2 the intersections of segment BC with the angle bisectors of ∠BXC and ∠BAD
respectively. Then BW1/W1C = BX/XC and BW2/W2D = BA/AD. We shall show
that BW1 = BW2.
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Since ∠DAC = ∠CBA, triangles ADC and BAC are similar and therefore

DC

AC
=
AC

BC
.

By the Law of sines
BW2

W2D
=
BA

AD
=
BC

AC
=

sinα

sin β
.

Consequently
BD

BW2

=
W2D

BW2

+ 1 =
sin β

sinα
+ 1,

BC

BW2

=
BC

BD
· BD
BW2

=
1

1−DC/BC
· BD
BW2

=
1

1− AC2/BC2
· BD
BW2

=

sin2α

sin2 α− sin2 β
· sin β + sinα

sinα
=

sinα

sinα− sin β
.

Note that AXBC is cyclic and so ∠BXC = ∠BAC = α. Hence, ∠XBC = 180◦ −
∠BXC − ∠BCX = 180◦ − α− φ. By the Law of sines for the triangle BXC, we have

BC

W1B
=
W1C

W1B
+ 1 =

CX

BX
+ 1 =

sin∠CBX
sinφ

+ 1 =

sin (α + φ)

sinφ
+ 1 = sinα cotφ+ cosα + 1.

So, it’s enough to prove that

sinα

sinα− sin β
= sinα cotφ+ cosα.

Since AC is tangent to the circle AIX, we have ∠AXI = ∠IAC = α/2. Moreover
∠XAI = ∠XAB+∠BAI = φ+α/2 and ∠XIA = 180◦−∠XAI−∠AXI = 180◦−α−φ.
Applying the Law of sines again XAC, XAI, IAC we obtain

AX

sin (α + φ)
=

AI

sinα/2
,

AX

sin (γ − φ)
=

AC

sin∠AXC
=

AC

sin β
,

AI

sin γ/2
=

AC

sin (α/2 + γ/2)
.

Combining the last three equalities we end up with

sin (γ − φ)
sin (α + φ)

=
AI

AC
· sin β

sinα/2
=

sin β

sinα/2
· sin γ/2

sin (α/2 + γ/2)
,

sin (γ − φ)
sin (α + φ)

=
sin γ cotφ− cos γ

sinα cotφ+ cosα
=

2 sin β/2 sin γ/2

sinα/2
,
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sinα sin γ cotφ− sinα cos γ

sin γ sinα cotφ+ sin γ cosα
=

2 sin β/2 cosα/2

cos γ/2

Subtracting 1 from both sides yields

− sinα cos γ − sin γ cosα

sin γ sinα cotφ+ sin γ cosα
=

2 sin β/2 cosα/2

cos γ/2
− 1 =

2 sin β/2 cosα/2− sin (α/2 + β/2)

cos γ/2
=

sin β/2 cosα/2− sinα/2 cos β/2

cos γ/2
,

− sin(α + γ)

sin γ sinα cotφ+ sin γ cosα
=

sin (β/2− α/2)
cos γ/2

,

− sin β

sinα cotφ+ cosα
= 2 sin γ/2 sin (β/2− α/2) =

2 cos (β/2 + α/2) sin (β/2− α/2) = sin β − sinα,

and the result follows. We are left to note that none of the denominators can vanish.

Solution by Achilleas Sinefakopoulos, Greece. We first note that

∠BAD = ∠BAC − ∠DAC = ∠A− ∠B.

Let CX and AD meet at K. Then ∠CXA = ∠ABC = ∠KAC. Also, we have ∠IXA =
∠A/2, since ω is tangent to AC at A. Therefore,

∠DAI = |∠B − ∠A/2| = |∠KXA− ∠IXA| = ∠KXI,

(the absolute value depends on whether ∠B ≥ ∠A/2 or not) which means that XKIA is
cyclic, i.e. K lies also on ω.

Let IK meet BC at E. (If ∠B = ∠A/2, then IK degenerates to the tangent line to ω at
I.) Note that BEIA is cyclic, because

∠EIA = 180◦ − ∠KXA = 180◦ − ∠ABE.

We have ∠EKA = 180◦ − ∠AXI = 180◦ − ∠A/2 and ∠AEI = ∠ABI = ∠B/2. Hence

∠EAK = 180◦ − ∠EKA− ∠AEI

= 180◦ − (180◦ − ∠A/2)− ∠B/2

= (∠A− ∠B)/2

= ∠BAD/2.

This means that AE is the angle bisector of ∠BAD. Next, let M be the point of inter-
section of AE and BI. Then

∠EMI = 180◦ − ∠B/2− ∠BAD/2 = 180◦ − ∠A/2,
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and so, its supplement is
∠AMI = ∠A/2 = ∠AXI,

so X,M,K, I, A all lie on ω. Next, we have

∠XMA = ∠XKA

= 180◦ − ∠ADC − ∠XCB

= 180◦ − ∠A− ∠XCB

= ∠B + ∠XCA

= ∠B + ∠XBA

= ∠XBE,

and so X,B,E,M are concyclic. Hence

∠EXC = ∠EXM + ∠MXC

= ∠MBE + ∠MAK

= ∠B/2 + ∠BAD/2

= ∠A/2

= ∠BXC/2.

This means that XE is the angle bisector of ∠BXC and so we are done!
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Solution based on that by Eirini Miliori (HEL2), edited by A. Sinefakopoulos,
Greece. It is ∠ABD = ∠DAC, and so AC is tangent to the circumcircle of 4BAD at
A. Hence CA2 = CD · CB.
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Triangle 4ABC is similar to triangle 4CAD, because ∠C is a common angle and
∠CAD = ∠ABC, and so ∠ADC = ∠BAC = 2ϕ.

Let Q be the point of intersection of AD and CX. Since ∠BXC = ∠BAC = 2ϕ, it
follows that BDQX is cyclic.Therefore, CD · CB = CQ · CX = CA2 which implies that
Q lies on ω.

Next let P be the point of intersection of AD with the circumcircle of triangle 4ABC.
Then ∠PBC = ∠PAC = ∠ABC = ∠APC yielding CA = CP. So, let T be on the side
BC such that CT = CA = CP . Then

∠TAD = ∠TAC − ∠DAC =

(
90◦ − ∠C

2

)
− ∠B =

∠A− ∠B
2

=
∠BAD

2
,

that is, line AT is the angle bisector of ∠BAD. We want to show that XT is the angle
bisector of ∠BXC. To this end, it suffices to show that ∠TXC = ϕ.

It is CT 2 = CA2 = CQ · CX, and so CT is tangent to the circumcircle of 4XTQ at
T. Since ∠TXQ = ∠QTC and ∠QDC = 2ϕ, it suffices to show that ∠TQD = ϕ, or, in
other words, that I,Q, and T are collinear.

Let T ′ is the point of intersection of IQ and BC. Then 4AIC is congruent to 4T ′IC,
since they share CI as a common side, ∠ACI = ∠T ′CI, and

∠IT ′D = 2ϕ− ∠T ′QD = 2ϕ− ∠IQA = 2ϕ− ∠IXA = ϕ = ∠IAC.

Therefore, CT ′ = CA = CT , which means that T coincides with T ′ and completes the
proof.

Solution based on the work of Artemis-Chrysanthi Savva (HEL4), completed
by A. Sinefakopoulos, Greece. Let G be the point of intersection of AD and CX.
Since the quadrilateral AXBC is cyclic, it is ∠AXC = ∠ABC.
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Let the line AD meet ω at K. Then it is ∠AXK = ∠CAD = ∠ABC, because the angle
that is formed by a chord and a tangent to the circle at an endpoint of the chord equals
the inscribed angle to that chord. Therefore, ∠AXK = ∠AXC = ∠AXG. This means
that the point G coincides with the point K and so G belongs to the circle ω.

Let E be the point of intersection of the angle bisector of ∠DAB with BC. It suffices to
show that

CE

BE
=
XC

XB
.

Let F be the second point of intersection of ω with AB. Then we have ∠IAF = ∠CAB
2

=
∠IXF, where I is the incenter of 4ABC, because ∠IAF and ∠IXF are inscribed in the
same arc of ω. Thus 4AIF is isosceles with AI = IF. Since I is the incenter of 4ABC,
we have AF = 2(s− a), where s = (a+ b+ c)/2 is the semiperimeter of 4ABC. Also, it
is CE = AC = b because in triangle 4ACE, we have

∠AEC = ∠ABC + ∠BAE

= ∠ABC +
∠BAD

2

= ∠ABC +
∠BAC − ∠ABC

2

= 90◦ − ∠ACE
2

,

and so ∠CAE = 180◦ − ∠AEC − ∠ACE = 90◦ − ∠ACE
2

= ∠AEC. Hence

BF = BA− AF = c− 2(s− a) = a− b = CB − CE = BE.

Moreover, triangle 4CAX is similar to triangle 4BFX, because ∠ACX = ∠FBX and

∠XFB = ∠XAF + ∠AXF = ∠XAF + ∠CAF = ∠CAX.

Therefore
CE

BE
=
AC

BF
=
XC

XB
,

as desired. The proof is complete.

Solution by IRL1 and IRL 5. Let ω denote the circle through A and I tangent to
AC. Let Y be the second point of intersection of the circle ω with the line AD. Let L
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be the intersection of BC with the angle bisector of ∠BAD. We will prove ∠LXC =
1/2∠BAC = 1/2∠BXC.

We will refer to the angles of 4ABC as ∠A,∠B,∠C. Thus ∠BAD = ∠A− ∠B.

On the circumcircle of 4ABC, we have ∠AXC = ∠ABC = ∠CAD, and since AC is
tangent to ω, we have ∠CAD = ∠CAY = ∠AXY . Hence C,X, Y are collinear.

Also note that 4CAL is isosceles with ∠CAL = ∠CLA = 1
2
(∠BAD)+∠ABC = 1

2
(∠A+

∠B) hence AC = CL. Moreover, CI is angle bisector to ∠ACL so it’s the symmetry axis
for the triangle, hence ∠ILC = ∠IAC = 1/2∠A and ∠ALI = ∠LIA = 1/2∠B. Since
AC is tangent to ω, we have ∠AY I = ∠IAC = 1/2∠A = ∠LAY + ∠ALI. Hence L, Y, I
are collinear.

Since AC is tangent to ω, we have 4CAY ∼ 4CXA hence CA2 = CX · CY . However
we proved CA = CL hence CL2 = CX · CY . Hence 4CLY ∼ 4CXL and hence
∠CXL = ∠CLY = ∠CAI = 1/2∠A.

A

B C

I

D

X

L

Y

Solution by IRL 5. Let M be the midpoint of the arc BC. Let ω denote the circle
through A and I tangent to AC. Let N be the second point of intersection of ω with AB
and L the intersection of BC with the angle bisector of ∠BAD. We know DL

LB
= AD

AB
and

want to prove XB
XC

= LB
LC

.

First note that 4CAL is isosceles with ∠CAL = ∠CLA = 1
2
(∠BAD) + ∠ABC hence

AC = CL and LB
LC

= LB
AC

.

Now we calculate XB
XC

:

Comparing angles on the circles ω and the circumcircle of 4ABC we get 4XIN ∼
4XMB and hence also 4XIM ∼ 4XNB (having equal angles at X and proportional
adjoint sides). Hence XB

XM
= NB

IM
.

Also comparing angles on the circles ω and the circumcircle of 4ABC and using the
tangent AC we get 4XAI ∼ 4XCM and hence also 4XAC ∼ 4XIM. Hence XC

XM
=

AC
IM

.

Comparing the last two equations we get XB
XC

= NB
AC

. Comparing with LB
LC

= LB
AC

, it remains
to prove NB = LB.
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A

B

C

I

M

D

X

L

N

We prove 4INB ≡ 4ILB as follows:

First, we note that I is the circumcentre of 4ALN . Indeed, CI is angle bisector in the
isosceles triangle ACL so it’s perpendicular bisector for AL. As well, 4IAN is isosceles
with ∠INA = ∠CAI = ∠IAB hence I is also on the perpendicular bisector of AN .

Hence IN = IL and also ∠NIL = 2∠NAL = ∠A − ∠B = 2∠NIB (the last angle is
calculated using that the exterior angle of 4NIB is ∠INA = ∠A/2. Hence ∠NIB =
∠LIB and 4INB ≡ 4ILB by SAS.

Solution by ISR5 (with help from IRL5). Let M,N be the midpoints of arcs
BC,BA of the circumcircle ABC, respectively. Let Y be the second intersection of
AD and circle ABC. Let E be the incenter of triangle ABY and note that E lies
on the angle bisectors of the triangle, which are the lines Y N (immediate), BC (since
∠CBY = ∠CAY = ∠CAD = ∠ABC) and the angle bisector of ∠DAB; so the question
reduces to showing that E is also on XM , which is the angle bisector of ∠CXB.

We claim that the three lines CX,ADY, IE are concurrent at a pointD′. We will complete
the proof using this fact, and the proof will appear at the end (and see the solution by
HEL5 for an alternative proof of this fact).

To show that XEM are collinear, we construct a projective transformation which projects
M to X through center E. We produce it as a composition of three other projections.
Let O be the intersection of lines AD′DY and CIN . Projecting the points Y NCM on
the circle ABC through the (concyclic) point A to the line CN yields the points ONCI.
Projecting these points through E to the line AY yields OYDD′ (here we use the facts
that D′ lies on IE and AY ). Projecting these points to the circle ABC through C yields
NY BX (here we use the fact that D′ lies on CX). Composing, we observe that we found
a projection of the circle ABC to itself sending Y NCM to NY BX. Since the projection
of the circle through E also sends Y NC to NY B, and three points determine a projective
transformation, the projection through E also sends M to X, as claimed.
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Let B′, D′ be the intersections of AB,AD with the circle AXI, respectively. We wish to
show that this D′ is the concurrency point defined above, i.e. that CD′X and ID′E are
collinear. Additionally, we will show that I is the circumcenter of AB′E.

Consider the inversion with center C and radius CA. The circles AXI and ABD are
tangent to CA at A (the former by definition, the latter since ∠CAD = ∠ABC), so
they are preserved under the inversion. In particular, the inversion transposes D and B
and preserves A, so sends the circle CAB to the line AD. Thus X, which is the second
intersection of circles ABC and AXI, is sent by the inversion to the second intersection
of AD and circle AXI, which is D′. In particular CD′X are collinear.

In the circle AIB′, AI is the angle bisector of B′A and the tangent at A, so I is the
midpoint of the arc AB′, and in particular AI = IB′. By angle chasing, we find that
ACE is an isosceles triangle:

∠CAE = ∠CAD + ∠DAE = ∠ABC + ∠EAB = ∠ABE + ∠EAB = ∠AEB = ∠AEC,

thus the angle bisector CI is the perpendicular bisector of AE and AI = IE. Thus I is
the circumcenter of AB′E.

We can now show that ID′E are collinear by angle chasing:

∠EIB′ = 2∠EAB′ = 2∠EAB = ∠DAB = ∠D′AB′ = ∠D′IB′.

Solution inspired by ISR2. Let W be the midpoint of arc BC, let D′ be the second
intersection point of AD and the circle ABC. Let P be the intersection of the angle
bisector XW of ∠CXB with BC; we wish to prove that AP is the angle bisector of
DAB. Denote α = ∠CAB

2
, β = ∠ABC.

Let M be the intersection of AD and XC. Angle chasing finds:

∠MXI = ∠AXI − ∠AXM = ∠CAI − ∠AXC = ∠CAI − ∠ABC = α− β
= ∠CAI − ∠CAD = ∠DAI = ∠MAI

And in particular M is on ω. By angle chasing we find

∠XIA = ∠IXA+ ∠XAI = ∠ICA+ ∠XAI = ∠XAC = ∠XBC = ∠XBP

and ∠PXB = α = ∠CAI = ∠AXI, and it follows that 4XIA ∼ 4XBP . Let S be the
second intersection point of the cirumcircles of XIA and XBP . Then by the spiral map
lemma (or by the equivalent angle chasing) it follows that ISB and ASP are collinear.
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Let L be the second intersection of ω and AB. We want to prove that ASP is the angle
bisector of ∠DAB = ∠MAL, i.e. that S is the midpoint of the arc ML of ω. And this
follows easily from chasing angular arc lengths in ω:

ÃI = ∠CAI = α

ÎL = ∠IAL = α

M̄I = ∠MXI = α− β
ÃI − S̃L = ∠ABI = β

2

And thus
M̄L = M̄I + ÎL = 2α− β = 2(ÃI − β

2
) = 2S̃L.

Solution by inversion, by JPN Observer A, Satoshi Hayakawa. Let E be the
intersection of the bisector of ∠BAD and BC, and N be the middle point of arc BC of
the circumcircle of ABC. Then it suffices to show that E is on line XN .

We consider the inversion at A. Let P ∗ be the image of a point denoted by P . Then
A,B∗, C∗, E∗ are concyclic, X∗, B∗, C∗ are colinear, and X∗I∗ and AC∗ are parallel. Now
it suffices to show that A,X∗, E∗, N∗ are concyclic. Let Y be the intersection of B∗C∗
and AE∗. Then, by the power of a point, we get

A,X∗, E∗, N∗ are concyclic⇐⇒ Y X∗ · Y N∗ = Y A · Y E∗

⇐⇒ Y X∗ · Y N∗ = Y B∗ · Y C∗.
(A,B∗, C∗, E∗ are concyclic)

Here, by the property of inversion, we have

∠AI∗B∗ = ∠ABI =
1

2
∠ABC =

1

2
∠C∗AD∗.
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Define Q,R as described in the figure, and we get by simple angle chasing

∠QAI∗ = ∠QI∗A, ∠RAI∗ = ∠B∗I∗A.

Especially, B∗R and AI∗ are parallel, so that we have

Y B∗

Y N∗
=
Y R

Y A
=
Y X∗

Y C∗
,

and the proof is completed.
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