Language: English

Day: 2

Thursday, April 12, 2018

Problem 4. A *domino* is a 1×2 or 2×1 tile.

Let $n \ge 3$ be an integer. Dominoes are placed on an $n \times n$ board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap.

The value of a row or column is the number of dominoes that cover at least one cell of this row or column. The configuration is called *balanced* if there exists some $k \ge 1$ such that each row and each column has a value of k.

Prove that a balanced configuration exists for every $n \ge 3$, and find the minimum number of dominoes needed in such a configuration.

Problem 5. Let Γ be the circumcircle of triangle ABC. A circle Ω is tangent to the line segment AB and is tangent to Γ at a point lying on the same side of the line AB as C. The angle bisector of $\angle BCA$ intersects Ω at two different points P and Q.

Prove that $\angle ABP = \angle QBC$.

Problem 6.

(a) Prove that for every real number t such that $0 < t < \frac{1}{2}$ there exists a positive integer n with the following property: for every set S of n positive integers there exist two different elements x and y of S, and a non-negative integer m (i.e. $m \ge 0$), such that

$$|x - my| \le ty.$$

(b) Determine whether for every real number t such that $0 < t < \frac{1}{2}$ there exists an infinite set S of positive integers such that

|x - my| > ty

for every pair of different elements x and y of S and every positive integer m (i.e. m > 0).