
Problem 1

Let ABCD be a convex quadrilateral with ∠DAB = ∠BCD = 90◦ and ∠ABC > ∠CDA. Let Q and R
be points on the segments BC and CD, respectively, such that the line QR intersects lines AB and AD at
points P and S, respectively. It is given that PQ = RS. Let the midpoint of BD be M and the midpoint of
QR be N . Prove that M,N,A and C lie on a circle.

Mark Mordechai Etkind, Israel

Solution 1

Note that N is also the midpoint of PS. From right-angled triangles PAS and CQR we obtain ∠ANP =
2∠ASP , ∠CNQ = 2∠CRQ, hence ∠ANC = ∠ANP+∠CNQ = 2(∠ASP+∠CRQ) = 2(∠RSD+∠DRS) =
2∠ADC.
Similarly, using right-angled triangles BAD and BCD, we obtain ∠AMC = 2∠ADC.
Thus ∠AMC = ∠ANC, and the required statement follows.

Solution 2

In this proof we show that we have ∠NCM = ∠NAM instead. From right-angled triangles BCD and QCR
we get ∠DRS = ∠CRQ = ∠RCN and ∠BDC = ∠DCM . Hence ∠NCM = ∠DCM −∠RCN . From right-
angled triangle APS we get ∠PSA = ∠SAN . From right-angled triangle BAD we have ∠MAD = ∠BDA.
Moreover, ∠BDA = ∠DRS + ∠RSD − ∠RDB.
Therefore ∠NAM = ∠NAS − ∠MAD = ∠CDB − ∠DRS = ∠NCM , and the required statement follows.

Solution 3

As N is also the midpoint of PS, we can shrink triangle APS to a triangle A0QR (where P is sent to Q and
S is sent to R). Then A0, Q,R and C lie on a circle with center N . According to the shrinking the line A0R
is parallel to the line AD. Therefore ∠CNA = ∠CNA0 = 2∠CRA0 = 2∠CDA = ∠CMA. The required
statement follows.
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Problem 2

Find the smallest positive integer k for which there exist a colouring of the positive integers Z>0 with k
colours and a function f : Z>0 → Z>0 with the following two properties:

(i) For all positive integers m,n of the same colour, f(m+ n) = f(m) + f(n).

(ii) There are positive integers m,n such that f(m+ n) 6= f(m) + f(n).

In a colouring of Z>0 with k colours, every integer is coloured in exactly one of the k colours. In both (i)
and (ii) the positive integers m,n are not necessarily different.

Merlijn Staps, the Netherlands

Solution 1:

The answer is k = 3.
First we show that there is such a function and coloring for k = 3. Consider f : Z>0 → Z>0 given by f(n) = n
for all n ≡ 1 or 2 modulo 3, and f(n) = 2n for n ≡ 0 modulo 3. Moreover, give a positive integer n the i-th
color if n ≡ i (3).
By construction we have f(1 + 2) = 6 6= 3 = f(1) + f(2) and hence f has property (ii).
Now let n,m be positive integers with the same color i. If i = 0, then n + m has color 0, so f(n + m) =
2(n+m) = 2n+ 2m = f(n) + f(m). If i = 1, then n+m has color 2, so f(n+m) = n+m = f(n) + f(m).
Finally, if i = 2, then n + m has color 1, so f(n + m) = n + m = f(n) + f(m). Therefore f also satisfies
condition (i).

Next we show that there is no such function and coloring for k = 2.
Consider any coloring of Z>0 with 2 colors and any function f : Z>0 → Z>0 satisfying conditions (i) and (ii).
Then there exist positive integers m and n such that f(m + n) 6= f(m) + f(n). Choose m and n such that
their sum is minimal among all such m,n and define a = m+ n. Then in particular for every b < a we have
f(b) = bf(1) and f(a) 6= af(1).
If a is even, then condition (i) for m = n = a

2 implies f(a) = f(a
2 ) + f(a

2 ) = f(1)a, a contradiction. Hence a
is odd. We will prove two lemmas.

Lemma 1. Any odd integer b < a has a different color than a.

Proof. Suppose that b < a is an odd integer, and that a and b have the same color. Then on the one hand,
f(a+ b) = f(a) + bf(1). On the other hand, we also have f(a+ b) = f(a+b

2 ) + f(a+b
2 ) = (a+ b)f(1), as a+b

2
is a positive integer smaller than a. Hence f(a) = f(a + b)− bf(1) = (a + b)f(1)− bf(1) = af(1), which is
again a contradiction. Therefore all odd integers smaller than a have a color different from that of a.

Lemma 2. Any even integer b < a has the same color as a

Proof. Suppose b < a is an even integer, and that a and b have different colors. Then a− b is an odd integer
smaller than a, so it has the same color as b. Thus f(a) = f(a− b) + f(b) = (a− b)f(1) + bf(1) = af(1), a
contradiction. Hence all even integers smaller than a have the same color as a.

Suppose now a+ 1 has the same color as a. As a > 1, we have a+1
2 < a and therefore f(a+ 1) = 2f(a+1

2 ) =
(a + 1)f(1). As a − 1 is an even integer smaller than a, we have by Lemma 2 that a − 1 also has the same
color as a. Hence 2f(a) = f(2a) = f(a+ 1) + f(a− 1) = (a+ 1)f(1) + (a− 1)f(1) = 2af(1), which implies
that f(a) = af(1), a contradiction. So a and a+ 1 have different colors.
Since a − 2 is an odd integer smaller than a, by Lemma 1 it has a color different from that of a, so a − 2
and a + 1 have the same color. Also, we have seen by Lemma 2 that a − 1 and a have the same color. So
f(a) + f(a − 1) = f(2a − 1) = f(a + 1) + f(a − 2) = (a + 1)f(1) + (a − 2)f(1) = (2a − 1)f(1), from which
it follows that f(a) = (2a − 1)f(1) − f(a − 1) = (2a − 1)f(1) − (a − 1)f(1) = af(1), which contradicts our
choice of a and finishes the proof.
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Solution 2:

We prove that k ≤ 3 just as in first solution.
Next we show that there is no such function and coloring for k = 2.
Consider any coloring of Z>0 with 2 colors and any function f : Z>0 → Z>0 satisfying conditions (i) and (ii).
We first notice with m = n that f(2n) = 2f(n).

Lemma 3. For every n ∈ Z>0, f(3n) = 3f(n) holds.

Proof. Define c = f(n), d = f(3n). Then we have the relations

f(2n) = 2c, f(4n) = 4c, f(6n) = 2d.

• If n and 2n have the same color, then f(3n) = f(n) + f(2n) = 3c = 3f(n).

• If n and 3n have the same color, then 4c = f(4n) = f(n) + f(3n) = c+ f(3n), so f(3n) = 3f(n).

• If 2n and 4n have the same color, then 2d = f(6n) = f(2n) + f(4n) = 2c+ 4c = 6c, so f(3n) = d = 3c.

• Otherwise n and 4n have the same color, and 2n and 3n both have the opposite color to n. Therefore
we compute 5c = f(n) + f(4n) = f(5n) = f(2n) + f(3n) = 2c+ f(3n) so f(3n) = 3f(n).

Consequently, for k = 2 we necessarily have f(3n) = 3f(n).

Now let a be the smallest integer such that f(a) 6= af(1). In particular a is odd and a > 3. Consider the
three integers a, a−32 , a+3

2 . By pigeonhole principle two of them have the same color.

• If a−3
2 and a+3

2 have the same color, then f(a) = a−3
2 f(1) + a+3

2 f(1) = af(1).

• If a and a−3
2 have the same color, then 3a−1

2 f(1) = 3f(a−1
2 ) = f( 3a−3

2 ) = f(a) + f(a−3
2 ) = f(a) +

a−3
2 f(1), so f(a) = af(1).

• If a and a+3
2 have the same color, then 3a+1

2 f(1) = 3f(a+1
2 ) = f( 3a+3

2 ) = f(a) + f(a+3
2 ) = f(a) +

a+3
2 f(1), so f(a) = af(1).

In the three cases we find a contradiction with f(a) 6= af(1), so it finishes the proof.

Solution 3:

As before we prove that k ≤ 3 and for any such function and colouring we have f(2n) = 2f(n).
Now we show that there is no such function and coloring for k = 2.
Consider any coloring of Z>0 with 2 colors and any function f : Z>0 → Z>0 satisfying conditions (i) and (ii).
Say the two colors are white (W) and black (B). Pick m,n any two integers such that f(m+n) = f(m)+f(n).
Without loss of generality we may assume that m+ n,m are black and n is white.

Lemma 4. For all l ∈ Z>0 and every x whose color is black, we have x + lm is black and f(x + lm) =
f(x) + lf(m).

Proof. We proceed by induction. It is clearly true for l = 0. If x + lm is black and satisfies f(x + lm) =
f(x) + lf(m), then f(x + (l + 1)m) = f(x + lm) + f(m) = f(x) + (l + 1)f(m) and f(x + (l + 1)m + n) =
f(x+ lm) + f(m+ n) = f(x) + lf(m) + f(m+ n) 6= f(x) + (l+ 1)f(m) + f(n) = f(x+ (l+ 1)m) + f(n), so
x+ (l + 1)m is not the same color of n, therefore x+ (l + 1)m is black. Thjs completes the induction.

In particular we then must have that 2ln is white for every l, because otherwise since 2lm is black we would
have 2lf(m + n) = f(2lm + 2ln) = f(2lm) + f(2ln) = 2l(f(m) + f(n)), and consequently f(m + n) =
f(m) + f(n).

Lemma 5. For every l ≥ 1, 2lm+ 2l−1n is black.
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Proof. On the one hand we have 2lf(m+ n) = f(2lm+ 2ln) = f(2l−1(2m+ n) + 2l−1n). On the other hand
we have

2lf(m+n) = 2l−1·2f(m+n) 6= 2l−1(f(m+n)+f(m)+f(n)) = 2l−1(f(2m+n)+f(n)) = f(2lm+2l−1n))+f(2l−1n).

Therefore 2lm+ 2l−1n and 2l−1n have different color, which means 2lm+ 2l−1n is black.

Combining the two lemmas give jm+ 2l−1n is black for all j ≥ 2l and every l ≥ 1.
Now write m = 2l−1m′ with m′ odd. Let t be a number such that 2t−1

m′ is an integer and j = 2t−1
m′ n ≥ 2l, i.e.

t is some multiple of φ(m′). Then we must have that jm + 2l−1n is black, but by definition jm + 2l−1n =
(2t − 1)2l−1n+ 2l−1n = 2t+l−1n is white. This is a contradiction, so k = 2 is impossible.
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Problem 3

There are 2017 lines in a plane such that no 3 of them go through the same point. Turbo the snail can slide
along the lines in the following fashion: she initially moves on one of the lines and continues moving on a
given line until she reaches an intersection of 2 lines. At the intersection, she follows her journey on the other
line turning left or right, alternating the direction she chooses at each intersection point she passes. Can it
happen that she slides through a line segment for a second time in her journey but in the opposite direction
as she did for the first time?

Márk Di Giovanni, Hungary

1. Solution

We show that this is not possible.
The lines divide the plane into disjoint regions. We claim that there exists an alternating 2-coloring of these
regions, that is each region can be colored in black or white, such that if two regions share a line segment,
they have a different color. We show this inductively.
If there are no lines, this is obvious. Consider now an arrangement of n lines in the plane and an alternating
2-coloring of the regions. If we add a line g, we can simply switch the colors of all regions in one of the half
planes divided by g from white to black and vice versa. Any line segment not in g will still be between two
regions of different color. Any line segment in g cuts a region determined by the n lines in two, and since we
switched colors on one side of g this segment will also lie between two regions of different color.
Now without loss of generality we may assume, that Turbo starts on a line segment with a white region on
her left and a black one on her right. At any intersection, if she turns right, she will keep the black tile to
her right. If she turns left, she will keep the white tile to her left. Thus wherever she goes, she will always
have a white tile on her left and a black tile on her right. As a consequence, she can cross every line segment
only in the direction where she has a white tile to her left, and never the opposite direction where she would
have a black tile to the left.

2. Solution

Suppose the assumption is true.
Let’s label each segment in the snail’s path with L or R depending on the direction that Turbo chose at the
start point of this segment (one segment can have several labels if it has been visited several times).
Consider the first segment that has been visited twice in different directions, name this segment s1. Assume
without loss of generality that it is labeled with L. Then next segment must be labeled with R, name this
one s2.
Let’s look at the label which s1 can get on the second visit. If it gets L then the previous segment in the
path must be s2. But in this case s1 is not the first segment that has been visited twice in different directions
because s2 has been visited earlier. So the second label of s1 must be R, and Turbo must have come from
the opposite side of s2.
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Since Turbo alters directions at each point, labels in her path also alter. And because two labels of s1 are
different, the number of visited segments between these two visits must be even.
Now let’s make the following observation: each segment in the path corresponds to exactly one line, and its
previous and next segments are on opposite sides of this line.

Again consider the path between two visits of s1.
Each line intersecting this path must be crossed an even number of times because Turbo has to return to
the initial side of each line. Therefore, an even number of segments of Turbo’s path are contained on each of
these lines. But the line containing s1 must be crossed an odd number times. Since each crossing corresponds
to exactly one segment in the path, the number of segments must be odd.
Here we get the contradiction. Therefore, the assumption is false.

3. Solution

Suppose that the snail always slides slightly to the right of the line segments on her path. When turning to
the right, she does not cross any line, whereas when turning to the left, she crosses exactly two lines. This
means that at any time of her journey, she has crossed an even number of lines.
Assuming that at some point she slides along a segment for the second time, but in the opposite direction,
we argue that she needs to cross an odd number of lines. Let ` be the line on which the revisit happens. In
order to get to the other side of `, the snail has to cross ` an odd number of times. To visit the same segment
of `, she must cross every other line an even number of times.

4. Solution

Let us color in red all intersection points of the given lines and let us choose one of two possible directions
on each segment (draw an arrow on each segment). Consider a red point R where two given lines a and b
meet, and the four segments a1, a2, b1, b2 with endpoint R (so that ai ⊂ a, bj ⊂ b). R is called a saddle if
on a1, a2 the arrows go out of R while on b1, b2 the arrows enter R, or visa versa, on b1, b2 the arrows go
out of R while on a1, a2 the arrows enter R. The set of arrows (chosen on all segments) is said to be good if
all red points are saddles. It is sufficient to prove that there exists a good set of arrows. Indeed, if initially
Turbo is moving along (or opposite) the arrow, then this condition holds after she turns at a red point.
The given lines cut the plane into regions. Further we need the following property of the good set of arrows
(this property directly follows from the definition): the boundary of any bounded region is a directed cycle
of arrows; the boundary of any unbounded region is a directed chain of arrows.
We construct a good set of arrows by induction on n with trivial base n = 1. Now erase one of n given lines
and assume we have a good set of arrows for remaining n−1 lines. Now restore the n-th line `, assume that `
is horizontal. Denote by A1, . . . , An−1 all new red points on ` from the left to the right. Each of Ai belongs
to some old segment mi of the line `i. Let us call Ai ascending if the arrow on mi goes up, and descending
if the arrow on mi goes down. Consider the region containing the segment AiAi+1. By the property, Ai and
Ai+1 can not be both ascending or both descending. Thus we can choose arrows on all pieces of ` so that
each arrow goes from a descending to an ascending vertex.
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Each of points Ai cuts mi into two new pieces; the direction of new pieces supposed to be the same as on
mi. Now simultaneously change the direction of arrows on all pieces below the line `. It is easy to see that
A1, . . . , An−1 become saddles, while the other red points remain saddles. This completes the induction step.
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Problem 4

Let n ≥ 1 be an integer and let t1 < t2 < . . . < tn be positive integers. In a
group of tn + 1 people, some games of chess are played. Two people can play
each other at most once. Prove that it is possible for the following conditions
to hold at the same time:

i) The number of games played by each person is one of t1, t2, . . . , tn,

ii) For every i with 1 ≤ i ≤ n, there is someone who has played exactly ti
games of chess.

Gerhard Wöginger, Luxembourg

Comment

In graph theory terms the problem is to prove that for any finite nonempty set
T of positive integers there exists a graph of size max T +1 such that the degree
set of the graph is equal to T .

Among graph theory specialists a generalization of this problem is known
[1]. Nevertheless, the problem still suited the contest.

1. Solution (see also [2])

Let T = {t1, . . . , tn}. The proof proceeds by induction on n = |T |. If n = 1 and
T = {t} , choose a group of t + 1 people and let every pair of two persons play
against each other. Then every person has played t games and the conditions
of the problem are satisfied.

In the inductive step, suppose that T has n ≥ 2 elements t1 < t2 < · · · < tn.
Consider the set

T ′ = {tn − tn−1, tn − tn−2, . . . , tn − t1}.

By the inductive hypothesis, there exists a group G′ of tn − t1 + 1 people that
satisfies the conditions of the problem for T ′.

Next construct a group G′′ of tn + 1 people by adding t1 people who do not
know any of the other tn − t1 + 1 people in G′. Finally, construct a group G
by complementing the knowledge relation in G′′: two persons play against each
other in G if and only if they do not play against each other in G′′.

By construction t ∈ T if and only if there exists a person in G′′ that played
against exactly tn − t other people (if t = tn, choose one of the t1 people added
to G′). That person knows tn− (tn− t) = t other students in G, completing the
proof.

2. Solution

Let T = {t1, . . . , tn}. The proof proceeds by induction on n = |T |. If n = 1
and T = {t}, we choose a group of t + 1 people such that everyone plays with
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everyone else. If n = 2 and T = {t1, t2} with t1 < t2, divide the t2 + 1 people
into groups A resp. B of size t1 resp. t2 − t1 + 1 such that everyone from
group A played with everyone else whereas people from group B only played
with the people from group A. Then the people from group A resp. B played
with exactly t2 resp. t1 other people. In the inductive step, suppose that T has
n > 2 elements t1 < . . . < tn. Consider the set

T ′ = (T \{t1, tn})− t1 = {tn−1 − t1, tn−1 − t1, . . . , t2 − t1}.

By the induction hypothesis there exists a group C of tn−1− t1 + 1 people that
satisfies the conditions of the problem for T ′. Next add groups D resp. E of
t1 resp. tn − tn−1 people such that people from group D played with everyone
else whereas people from group E only played with the people from group D.
Then the people from group C played with t other people if and only if they
played with t− t1 many people among C, i.e. if and only if t ∈ {t2, . . . , tn−1} =
T \{t1, tn}. People from group D resp. E played with tn resp t1 peoples, which
completes the proof.

3. Solution

The proof proceeds by induction on |tn|. If tn = 1 we have n = 1 and we
can consider two persons that play against each other. Then every player has
played 1 game and the conditions of the problem are satisfied. If tn > 1 we
distinguish the two cases t1 > 1 and t1 = 1. If t1 > 1 there exists, by the
induction hypothesis, a group A of size tn that satisfies the conditions of the
problem for t′1 = t1 − 1, . . . , t′n = tn − 1. Now add a new person to A and let
him/her play against everyone from A. The new group will be of size tn + 1
and there exists a person which has played t games if and only if there exists a
person that has played t− 1 games within A, i.e. if and only if t ∈ {t1, . . . , tn}.
Hence the conditions of the problem are satisfied.

If t1 = 1 there exists, by the induction hypothesis, a group B of size tn−1
that satisfies the conditions of the problem for t′1 = t2 − 1, . . . , t′n−2 = tn−1 − 1.
Now add a new person P and let him/her play with everyone from group B and
a group C of size tn − tn−1 > 0 and let them play with P . The new group will
be of size tn−1 + 1 + (tn− tn−1) + 1 = tn + 1. Since person P has played against
everyone he will have played tn games. The people in C will have played 1 = t1
games. There exists a person in B that has played t games if and only if there
exist a person in B that has played t − 1 games within B, i.e. if and only if
t ∈ {t2, . . . , tn−1}. Hence the conditions of the problem are satisfied.

4. Solution

We generalize the construction for T = {1, ..., n}
Construction
Take sets of people A1, ..., An. Let all people of Ai play chess with all people in
Aj with j ≥ n− i + 1
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Now the number of games played by anyone in Ai is
(
∑

j≥n−i+1 |Aj |) or (
∑

j≥n−i+1 |Aj |)− 1 if i ≥ n− i + 1.
Now if we start with one person in each Ai and two people in Adn2 e. The number
of played games for anyone in Ai is equal to i. In particular this is a construction
for T = {1, .., n}
Now to get to numbers of general sets T of size n we can change the sizes of Ai

but keep the construction.

Variant 1

Observation 1 Adding a person to a set Ai increases the number of games
played in Aj for j ≥ n− i + 1, by exactly one.

Start with the construction above and then add t1 − 1 people to group An,
making the new set of games played equal to {t1, t1 + 1, ..., n + t1 − 1}. Then
add t2− t1−1 to An−1 to get set of games played to {t1, t2, t2 + 1, ..., n+ t2−2}
and repeat until we get to the set T adding a total of

∑n
j=1 tj−tj−1−1 = tn−n

people (let t0 = 0), so we get tn + 1 people in the end.
Clearly we can start by adding vertices to A1 or any other set instead of An

first and obtain an equivalent construction with the same number of people.

Variant 2

It is also possible to calculate the necessary sizes of Ai’s all at once. We have
by construction the number of games played in A1 is less than the number of
games played in A2 etc. So we have that in the end we want the games played
in Ai to be exactly ti.

So (tt, t2, t3, ..., tn)
!
= (|An| , |An|+|An−1| , ... , (

∑n
j=2 |Aj |)−1 , (

∑n
j=1 |Aj |)−

1).

This gives us by induction that |An|
!
= t1, |An−1|

!
= t2 − t1, ..., |Adn2 e|

!
=

tn−dn2 e+1 − tn−dn2 e + 1, ..., |A1|
!
= tn − tn−1 and a quick calculation shows that

the sum of all sets is exactly 1+
∑n

j=1(tj− tj−1) = tn +1. (where the +1 comes
from the set Adn2 e and t0 = 0.)
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Problem 5

Let n ≥ 2 be an integer. An n-tuple (a1, a2, . . . , an) of positive integers is expensive if there exists a positive
integer k such that

(a1 + a2)(a2 + a3) · · · · · (an−1 + an)(an + a1) = 22k−1.

a) Find all positive integers n ≥ 2 for which there exists an expensive n-tuple.

b) Prove that for every positive integer m there exists an integer n ≥ 2 such that m belongs to an expensive
n-tuple.

There are exactly n factors in the product on the left hand side.

Harun Hindija, Bosnia and Herzegovina

Solution 1

a) Notice that for odd integers n > 2, the tuple (1, 1, . . . , 1) is expensive. We will prove that there are no
expensive n-tuples for even n.

Lemma 0.1. If an expensive n-tuple exists for some n ≥ 4, then also an expensive n− 2-tuple.

Proof. In what follows all indices are considered modulo n. Let (a1, a2, . . . , an) be an expensive n-tuple and
at the largest element of the tuple. We have the inequalities

at−1 + at ≤ 2at < 2(at + at+1) (1)

at + at+1 ≤ 2at < 2(at−1 + at). (2)

Since both at−1 + at and at + at+1 are powers of 2 (they are divisors of a power of 2), we deduce from (1)
and (2)

at−1 + at = at + at+1 = 2r

for some positive integer r, and in particular at−1 = at+1.
Consider now the n−2-tuple (b1, . . . , bn−2) obtained by removing at and at+1 from (a1, a2, . . . , an). By what
we just said we have

n−2∏
i=1

(bi + bi+1) =

∏n
i=1(ai + ai+1)

(at−1 + at)(at + at+1)
= 22(k−r)−1,

and hence (b1, . . . , bn−2) is again expensive.

From the lemma we now conclude that if there exists an expensive n-tuple for some even n, then also an
expensive 2-tuple i.e.

(a1 + a2)2 = 22k−1

for some positive integers a1, a2, which is impossible since the right hand side is not a square.

b) We prove this by induction. In a) we saw that 1 belongs to an expensive n-tuple. Assume now that all
odd positive integers less that 2k belong to an expensive n-tuple, for some k ≥ 1. Hence for any odd r < 2k

there is an integer n and an expensive n-tuple (a1, . . . , r, . . . , an). We notice that then also (a1, . . . , r, 2
k+1 −

r, r, . . . , an) is expensive. Since 2k+1 − r can take all odd values between 2k and 2k+1 the induction step is
complete.
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Solution 2

a) For odd n the tuple (1, 1, . . . , 1) is a solution.
Now consider n even. Since the product

∏
(ai + ai+1) is a power of two, every factor needs to be a power

of two. We are going to prove that for all tuples (a1, . . . , an) such that ai + ai+1 is always a power of two
, it is the case that

∏
(ai + ai+1) is equal to an even power of two. We are going to prove this with strong

induction on
∑
ai. When all ai are equal to one this is certainly the case. Since ai + ai+1 > 1 it is even

and we conclude that the ai are either all odd or all even. In the case they are all even, then consider the
tuple (b1, . . . , bn) with bi = ai/2. This tuple clearly satisfies the hypothesis as well and we have

∑
bi <

∑
ai.

Furthermore we have
∏

(ai + ai+1) = 2n
∏

(bi + bi+1) and since n is even we are done in this case.
Now all ai are odd. Suppose none of are one, then consider the tuple (b1, . . . , bn) with bi = (ai + (−1)i)/2.
Since all ai are odd and strictly larger than one, the bi are positive integers and satisfy bi+bi+1 = (ai+ai+1)/2,
a power of two. Since

∑
bi <

∑
ai and

∏
(ai + ai+1) = 2n

∏
(bi + bi+1) we are done in this case again. Now

there is at least one ai being one. We may assume i = 1, because the condition is cyclic. Moreover we may
also assume that a2 > 1 since not all of the ai are equal to one. Let now k be the smallest index larger than
one such that ak is equal to one. We are not excluding the case k = n + 1, yet. Now for i = 1, . . . , k − 1
we have ai + ai+1 > 2 and thus divisible by four. By induction it easily follows that ai ≡ (−1)i+1 mod (4)
for i = 1, . . . , k − 1. In particular, since ak = 1 we find that k is odd and at least three. Now consider the
tuple (b1, . . . , bn) with bi = (ai − (−1)i)/2 for i = 1, . . . , k and bi = ai otherwise. This is again a tuple that
satisfies the hypothesis, since b1 = a1 = 1 = bk = ak. Moreover b2 < a2 and thus

∑
bi <

∑
ai. Finally we

have
∏

(ai + ai+1) = 2k−1
∏

(bi + bi+1) and since k is odd we conclude the proof.

b) We use some of the ideas from a). Consider the operators T±(n) = 2n ± 1. We claim that for every
odd integer m there is an integer r and signs εi ∈ {+,−} for i = 1, . . . r such that Tεr ◦ · · · ◦ Tε1(1) = m.
This is certainly true for m = 1 and for m > 1 we find that m = T−((m + 1)/2) if m ≡ 1 mod (4) and
m = T+((m − 1)/2) if m ≡ 3 mod (4). Note that both (m + 1)/2 and (m − 1)/2 are odd integers in their
respective cases and (m−1)/2 ≤ (m+1)/2 < m for m > 1. Therefore iterating the procedure will eventually
terminate in one.
For the construction it is most convenient to set n = 2l + 1 and label the tuple (a−l, a−l+1, . . . , al). For
m = 1 we have the expensive tuple (1, 1, 1). For m > 1 we will define operators T± on expensive tuples
with the condition a−l = al = 1 that give rise to a new expensive tuple (b−l′ , . . . , bl′) with b−l′ = bl′ = 1
and b0 = T±a0. It is then clear that Tεr ◦ · · · ◦ Tε1((1, 1, 1)) is an expensive tuple containing m. We define
T± as follows: set l′ = l + 1 and b−l′ = bl′ = 1 and bi = T±(−1)i(ai) for i = −l, . . . , l. Here we identify +

with +1 and − with −1. We are left to prove that the new tuple is indeed expensive. If ±(−1)l = −1, then∏
(bi + bi+1) = 4 · 22l

∏
(ai + ai+1), and if ±(−1)l = +1, then

∏
(bi + bi+1) = 4 · 22l+2

∏
(ai + ai+1). In both

cases we end up with an expensive tuple again.
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Problem 6

Let ABC be an acute-angled triangle in which no two sides have the same length. The
reflections of the centroid G and the circumcentre O of ABC in its sides BC,CA,AB are
denoted by G1, G2, G3, and O1, O2, O3, respectively. Show that the circumcircles of the tri-
angles G1G2C, G1G3B, G2G3A, O1O2C, O1O3B, O2O3A and ABC have a common point.

The centroid of a triangle is the intersection point of the three medians. A median is a
line connecting a vertex of the triangle to the midpoint of the opposite side.

Charles Leytem, Luxembourg

Solution 1 (Euler lines)

Let H denote the orthocenter of ABC, and let e denote its Euler line. Let e1, e2, e3 denote
the respective reflections of e in BC,CA,AB. The proof naturally divides into two parts:
we first show that pairwise intersections of the circles in question correspond to pairwise
intersections of e1, e2, e3, and then prove that e1, e2, e3 intersect in a single point on the
circumcircle of ABC.

A

B

C

O

O1

O2

O3

G

G1

G2

G3

e

e1

e2

e3

H

X1

X2

X3

X

1



Now consider for example the circumcircles of O1O2C and G1G2C. By construction, it
is clear that ∠O2CO1 = ∠G2CG1 = 2∠ACB. Let G1O1 and G2O2 meet at X, and let e
meet e1, e2 at E1, E2, respectively, as shown in the diagram below. Chasing angles,

∠G2XG1 = ∠O2XO1 = ∠E2XE1 = 180◦ − ∠E1E2X − ∠XE1E2

= 180◦ − 2∠E1E2C −
(
∠CE1E2 − ∠CE1X

)
.

But ∠CE1X = ∠BE1O1 = ∠BE1O = 180◦ − ∠CE1E2, and thus

∠G2XG1 = ∠O2XO1 = 2
(
180◦ − ∠E1E2C − ∠CE1E2

)
= 2∠ACB.

A

B

C

O

O1

O2

G

G1

G2

e

e1

e2

X

E1

E2

It follows from this that X lies on the circumcircles of G1G2C and O1O2C. In other
words, the second point of intersection of the circumcircles of G1G2C and O1O2C is the
intersection of e1 and e2. Similarly, the circumcircles of G1G3B and O1O3B meet again
at the intersection of e1 and e3, and those of G2G3A and O2O3A meet again at the
intersection of e2 and e3.
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A

B

C

e

H

X1

X2

X′
1 = X′

2

It thus remains to show that e1, e2, e3 are concurrent, and intersect on the circumcircle
of ABC. Let e meet the circumcircles of the triangles BCH,ACH,ABH at X1, X2, X3,
respectively. It is well known that the reflections of H in the sides of ABC lie on the
circumcircle of ABC. For this reason, the circumcircles of BCH,ACH,ABH have the
same radius as the circumcircle of ABC, and hence the reflections X ′1, X

′
2, X

′
3 of X1, X2, X3

in the sides [BC], [CA], [AB] lie on the circumcircle of ABC. By definition, X ′1, X
′
2, X

′
3

lie on e1, e2, e3, respectively. It thus remains to show that they coincide.
To show that, for example, X ′1 = X ′2, it will be sufficient to show that ∠X2AC = ∠X ′1AC,
since we have already shown that X ′1 and X ′2 lie on the circumcircle of ABC. But, chasing
angles in the diagram above,

∠X ′1AC = ∠X ′1AB − ∠BAC =
(
180◦ − ∠X ′1CB

)
− ∠BAC

= 180◦ − ∠X1CB − ∠BAC =
(
180◦ − ∠BAC

)
− ∠X1HB

= ∠BHC − ∠X1HB = ∠X2HC = ∠X2AC,

where we have used the fact that BHCX1 and AHX2C are cyclic by construction, and
the fact that ∠BHC = 180◦ − ∠BAC. This shows that X ′1 = X ′2. Similarly, X ′1 = X ′3,
which completes the proof. �

Remark. The statement of the problem remains true if O and G are replaced with two points

that are aligned with the orthocenter H of the triangle, and indeed, the proof above did not

require any property of G and O other than the fact that they lie on a line through H, the Euler

line.
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Solution 2

The proof consists of two parts. First, we show that if P is any point inside the triangle
ABC and P1, P2, P3 are its reflections in the sides BC, CA, AB, then the circumcircles
of the triangles P1P2C, P1P3B, P2P3A intersect in a point TP on the circumcircle of the
triangle ABC. In the second part, we show that TG coincides with TO.
Now let P be any point inside the triangle ABC and let P1, P2, P3 be the reflections in
the sides as above. Let TP be the second intersection of the circumcircles of the triangles
P1P2C and ABC. We want to show that TP lies on the circumcircles of the triangles
P1P3B and P2P3A.

By construction, we have P1C = P2C, hence

∠CP1P2 = 90◦ − 1

2
∠P2CP1 = 90◦ − ∠ACB.

Similarly, ∠P2P3A = 90◦ − ∠BAC. This gives us

∠P2TPA = ∠CTPA− ∠CTPP2 = ∠CBA− ∠CP1P2

= ∠CBA− 90◦ + ∠ACB = 90◦ − ∠BAC = ∠P2P3A,

so TP lies on the circumcircle of the triangle P2P3A. Similarly, TP lies on the circumcircle
of the triangle P1P3B which completes the first part.
Note that if P2 is given, then TP is the unique point on the circumcircle of the triangle ABC
with ∠CTPP2 = 90◦−∠ACB. In the second part, we will use this as follows: If we can find
a point T on the circumcircle of the triangle ABC with ∠CTG2 = ∠CTO2 = 90◦−∠ACB,

4



then T = TG = TO and we are done.
Let H be the orthocenter of the triangle ABC and let H2 be the reflection in the side
AC. It is known that H2 lies on the circumcircle of the triangle ABC. G, O, H lie on the
Euler line, so G2, O2, H2 are collinear as well. Let T be the second intersection of G2H2

and the circumcircle of the triangle ABC. We can now complete the proof by seeing that

∠CTG2 = ∠CTO2 = ∠CTH2 = ∠CBH2 = 90◦ − ∠ACB.

�
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Solution 3 (complex numbers)

For every point P , let p denote the corresponding complex number. Set O to be the
origin, so o = 0, and without loss of generality we can assume that a, b and c lie on the

unit circle. Then the centroid can be expressed as g =
a + b + c

3
.

The segments oo1 and bc have a common midpoint, so o1 + o = b+ c, and then o1 = b+ c.
Similarly o2 = a+ c and o3 = a+ b. In order to compute g1, define y to be the projection
of g onto bc. Since b and c are on the unit circle, it is well known that y can be expressed
as

y =
1

2
(b + c + g − bcḡ).

By using ā =
1

a
, b̄ =

1

b
and c̄ =

1

c
(points on the unit circle), we obtain

g1 = b + c− ab + bc + ca

3a
.

Similarly, we get g2 = a + c− ab + bc + ca

3b
and g3 = a + b− ab + bc + ca

3c
.

1) Proof that circumcircles of triangles abc, o1o2c, o1o3b and o2o3a have common point.
Let x be the point of intersection of circumcircles of triangles o1o2c and abc (x 6= c). We

know that x, o1, o2 and c are concyclic if and only if
x− c

o1 − c
:
x− o2
o1 − o2

is real number,

which is equivalent to

x− c

x̄− c̄
· o1 − o2
ō1 − ō2

=
o1 − c

ō1 − c̄
· x− o2
x̄− ō2

. (1)

Since x and c are on the unit circle
x− c

x̄− c̄
= −xc. Also,

o1 − o2
ō1 − ō2

=
b− a

b̄− ā
= −ab, and

o1 − c

ō1 − c̄
=

b

b̄
= b2. Since x̄ =

1

x
, from (1) and previous relations, we have:

x =
ab + bc + ca

a + b + c
.

This formula is symmetric, so we conclude that x also belongs to circumcircles of o1o3b
and o2o3a.
2) Proof that x belongs to circumcircles of g1g2c, g1g3b and g2g3a.
Because of symmetry, it is enough to prove that x belongs to circumcircle of g1g2c, i.e. to
prove the following:

x− c

x̄− c̄
· g1 − g2
ḡ1 − ḡ2

=
g1 − c

ḡ1 − c̄
· x− g2
x̄− ḡ2

. (2)

Easy computations give that

g1 − g2 = (b− a)
2ab− bc− ac

3ab
, ḡ1 − ḡ2 = (b̄− ā)

2− a
c
− b

c

3
,

and then
g1 − g2
ḡ1 − ḡ2

=
c(bc + ac− 2ab)

2c− a− b
.
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On the other hand we have

g1 − c =
2ab− bc− ac

3a
, ḡ1 − c̄ =

2c− a− b

3bc
.

This implies
g1 − c

ḡ1 − c̄
=

2ab− bc− ac

2c− a− b
· bc
a
.

Then (2) is equivalent to

−xc · c(bc + ac− 2ab)

2c− a− b
=

2ab− bc− ac

2c− a− b
· bc
a
· x− g2
x̄− ḡ2

⇐⇒ xca(x̄− ḡ2) = b(x− g2),

which is also equivalent to

ab + bc + ca

a + b + c
·ca

(
a + b + c

ab + bc + ca
− 1

a
− 1

c
+

a + b + c

3ac

)
= b·

(
ab + bc + ca

a + b + c
− a− c +

ab + bc + ca

3b

)
.

The last equality can easily be verified, which implies that x belongs to circumcircle of
triangle g1g2c. This concludes our proof. �
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Solution 4 (rotation)

The first part of the first solution and the second part of the second solution can also be
done by the following rotation argument: The rotation through 2∠BAC about A takes
O3 to O2, G3 to G2 and H3 to H2 (again, H2, H3 are the reflections of the orthocenter
H in the sides CA, AB). Let X be the intersection of the Euler line reflections e2 (going
through O2, G2, H2) and e3 (going through O3, G3, H3). We now use the well-known fact
that if a rotation about a point A takes a line l and a point P on l to the line l′ and the
point P ′, then the quadrilateral APP ′X is cyclic, where X is the intersection of l and l′.
For this reason, AO3O2X, AG3G2X and AH3H2X are cyclic quadrilaterals. Since H2 and
H3 lie on the circumcircle of the triangle ABC, the circumcircles of the triangles AH3H2

and ABC are the same, hence X lies on the circumcircle of ABC.
This proves the first part of the first solution as well as the second part of the second
solution. �

Remark: Problem 6 is a special case of Corollary 3 in Darij Grinberg’s paper Anti-Steiner
points with respect to a triangle.
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