

Language: Spanish

Day: 2

Miércoles, 13 de abril de 2016

Problema 4. Dos circunferencias ω_1 y ω_2 del mismo radio se intersecan en dos puntos distintos X_1 y X_2 . Se considera una circunferencia ω tangente exteriormente a ω_1 en un punto T_1 , y tangente interiormente a ω_2 en un punto T_2 . Demostrar que las rectas X_1T_1 y X_2T_2 se intersecan en un punto que pertenece a ω .

Problema 5. Sean k y n enteros tales que $k \ge 2$ y $k \le n \le 2k-1$. Se ponen piezas rectangulares, cada una de tamaño $1 \times k$ ó $k \times 1$, en un tablero de $n \times n$ casillas cuadradas, de forma que cada pieza cubra exactamente k casillas del tablero y que no haya dos piezas superpuestas. Se hace esto hasta que no se puedan colocar más piezas. Para cada n y k que cumplen las condiciones anteriores, determinar el mínimo número de piezas que puede contener dicho tablero.

Problema 6. Sea S el conjunto de todos los enteros positivos n tales que n^4 tiene un divisor en el conjunto $\{n^2+1, n^2+2, ..., n^2+2n\}$. Demostrar que hay infinitos elementos en S de cada una de las formas 7m, 7m+1, 7m+2, 7m+5 y 7m+6, pero S no contiene elementos de la forma 7m+3 y 7m+4, siendo m un entero.

Language: Spanish

Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos