## Language: English

Problem 4. Two circles, $\omega_{1}$ and $\omega_{2}$, of equal radius intersect at different points $X_{1}$ and $X_{2}$. Consider a circle $\omega$ externally tangent to $\omega_{1}$ at a point $T_{1}$, and internally tangent to $\omega_{2}$ at a point $T_{2}$. Prove that lines $X_{1} T_{1}$ and $X_{2} T_{2}$ intersect at a point lying on $\omega$.

Problem 5. Let $k$ and $n$ be integers such that $k \geq 2$ and $k \leq n \leq 2 k-1$. Place rectangular tiles, each of size $1 \times k$ or $k \times 1$, on an $n \times n$ chessboard so that each tile covers exactly $k$ cells, and no two tiles overlap. Do this until no further tile can be placed in this way. For each such $k$ and $n$, determine the minimum number of tiles that such an arrangement may contain.

Problem 6. Let $S$ be the set of all positive integers $n$ such that $n^{4}$ has a divisor in the range $n^{2}+1$, $n^{2}+2, \ldots, n^{2}+2 n$. Prove that there are infinitely many elements of $S$ of each of the forms $7 m$, $7 m+1,7 m+2,7 m+5,7 m+6$ and no elements of $S$ of the form $7 m+3$ or $7 m+4$, where $m$ is an integer.

