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PROBLEMS

Day 1

Problem 1. Let �ABC be an acute-angled triangle, and let D be the foot of the altitude from C.
The angle bisector of ∠ABC intersects CD at E and meets the circumcircle ω of triangle �ADE
again at F. If ∠ADF = 45◦, show that CF is tangent to ω.

Problem 2. A domino is a 2 × 1 or 1 × 2 tile. Determine in how many ways exactly n2 dominoes
can be placed without overlapping on a 2n × 2n chessboard so that every 2 × 2 square contains at
least two uncovered unit squares which lie in the same row or column.

Problem 3. Let n, m be integers greater than 1, and let a1, a2, . . . , am be positive integers not
greater than nm. Prove that there exist positive integers b1, b2, . . . , bm not greater than n, such that

gcd(a1 + b1, a2 + b2, . . . , am + bm) < n,

where gcd(x1, x2, . . . , xm) denotes the greatest common divisor of x1, x2, . . . , xm.

Day 2

Problem 4. Determine whether there exists an infinite sequence a1, a2, a3, . . . of positive integers
which satisfies the equality

an+2 = an+1 +
√

an+1 + an

for every positive integer n.

Problem 5. Let m, n be positive integers with m > 1. Anastasia partitions the integers 1, 2, . . . , 2m
into m pairs. Boris then chooses one integer from each pair and finds the sum of these chosen integers.
Prove that Anastasia can select the pairs so that Boris cannot make his sum equal to n.

Problem 6. Let H be the orthocentre and G be the centroid of acute-angled triangle �ABC with
AB �= AC. The line AG intersects the circumcircle of �ABC at A and P. Let P ′ be the reflection of
P in the line BC. Prove that ∠CAB = 60◦ if and only if HG = GP ′.
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Problem 1. Let �ABC be an acute-angled triangle, and let D be the foot of the altitude from C.
The angle bisector of ∠ABC intersects CD at E and meets the circumcircle ω of triangle �ADE
again at F. If ∠ADF = 45◦, show that CF is tangent to ω.

(Luxembourg)
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Solution 1: Since ∠CDF = 90◦ − 45◦ = 45◦, the line DF bisects
∠CDA, and so F lies on the perpendicular bisector of segment AE,
which meets AB at G. Let ∠ABC = 2β. Since ADEF is cyclic,
∠AFE = 90◦, and hence ∠FAE = 45◦. Further, as BF bisects
∠ABC, we have ∠FAB = 90◦ − β, and thus

∠EAB = ∠AEG = 45◦ − β, and ∠AED = 45◦ + β,

so ∠GED = 2β. This implies that right-angled triangles �EDG
and �BDC are similar, and so we have |GD|/|CD| = |DE|/|DB|.
Thus the right-angled triangles �DEB and �DGC are similar,
whence ∠GCD = ∠DBE = β. But ∠DFE = ∠DAE = 45◦ −
β, then ∠GFD = 45◦ − ∠DFE = β. Hence GDCF is cyclic, so
∠GFC = 90◦, whence CF is perpendicular to the radius FG of ω.

It follows that CF is a tangent to ω, as required.

Solution 2: As ∠ADF = 45◦ line DF is an exterior bisector of ∠CDB. Since BF bisects ∠DBC line
CF is an exterior bisector of ∠BCD. Let ∠ABC = 2β, so ∠ECF = (∠DBC +∠CDB)/2 = 45◦ + β.
Hence ∠CFE = 180◦ −∠ECF −∠BCE −∠EBC = 180◦ − (45◦ + β + 90◦ − 2β + β) = 45◦. It follows
that ∠FDC = ∠CFE, then CF is tangent to ω.

Solution 3: Note that AE is diameter of circumcircle of �ABC since ∠CDF = 90◦. From
∠AEF = ∠ADF = 45◦ it follows that triangle �AFE is right-angled and isosceles. Without loss of
generality, let points A, E and F have coordinates (−1, 0), (1, 0) and (0, 1) respectively. Points F , E,
B are collinear, hence B have coordinates (b, 1 − b) for some b �= −1. Let point C ′ be intersection of
line tangent to circumcircle of �AFE at F with line ED. Thus C ′ have coordinates (c, 1) and from
C ′E ⊥ AB we get c = 2b/(b + 1). Now vector BC ′ = (2b/(b + 1) − b, b) = b/(b + 1) · (1 − b, b + 1),
vector BF = (−b, b) = (−1, 1) · b and vector BA = (−(b + 1), −(1 − b)). Its clear that (1 − b, b + 1)
and (−(b + 1), −(1 − b)) are symmetric with respect to FE = (−1, 1), hence BF bisects ∠C ′BA and
C ′ = C which completes the proof.
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Solution 4: Again F lies on the perpendicular bisector of segment

AE, so �AFE is right-angled and isosceles. Let M be an intersection
of BC and AF. Note that �AMB is isosceles since BF is a bisector
and altitude in this triangle. Thus BF is a symmetry line of �AMB.
Then ∠FDA = ∠FEA = ∠MEF = 45◦, AF = FE = FM and
∠DAE = ∠EMC. Let us show that EC = CM. Indeed,

∠CEM = 180◦ − (∠AED + ∠FEA + ∠MEF ) = 90◦ − ∠AED =
= ∠DAE = ∠EMC.

It follows that FMCE is a kite, since EF = FM and MC = CE.
Hence ∠EFC = ∠CFM = ∠EDF = 45◦, so FC is tangent to ω.

Solution 5: Let the tangent to ω at F intersect CD at C ′. Let ∠ABF =
∠FBC = β. It follows that ∠C ′FE = 45◦ since C ′F is tangent. We
have

sin∠BDC

sin∠CDF
· sin∠DFC ′

sin∠C ′FB
· sin∠FBC

sin∠CBD
=

sin 90◦

sin 45◦ · sin(90◦ − β)
sin 45◦ · sin β

sin 2β
=

2 sin β cos β

sin 2β
= 1.

So by trig Ceva on triangle �BDF, lines FC ′, DC and BC are concurrent (at C), so C = C ′. Hence
CF is tangent to ω.
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Problem 2. A domino is a 2 × 1 or 1 × 2 tile. Determine in how many ways exactly n2 dominoes
can be placed without overlapping on a 2n × 2n chessboard so that every 2 × 2 square contains at least
two uncovered unit squares which lie in the same row or column.

(Turkey)

Solution: The answer is
(

2n

n

)2

.

Divide the schessboard into 2 × 2 squares. There are exactly n2 such squares on the chessboard.
Each of these squares can have at most two unit squares covered by the dominos. As the dominos
cover exactly 2n2 squares, each of them must have exactly two unit squares which are covered, and
these squares must lie in the same row or column.

We claim that these two unit squares are covered by the same domino tile. Suppose that this is
not the case for some 2 × 2 square and one of the tiles covering one of its unit squares sticks out to
the left. Then considering one of the leftmost 2 × 2 squares in this division with this property gives a
contradiction.

Now consider this n × n chessboard consisting of 2 × 2 squares of the original board. Define A, B,
C, D as the following configurations on the original chessboard, where the gray squares indicate the
domino tile, and consider the covering this n × n chessboard with the letters A, B, C, D in such a

A = B = C = D =

way that the resulting configuration on the original chessboard satisfies the condition of the question.
Note that then a square below or to the right of one containing an A or B must also contain an

A or B. Therefore the (possibly empty) region consisting of all squares containing an A or B abuts
the lower right corner of the chessboard and is separated from the (possibly empty) region consisting
of all squares containing a C or D by a path which goes from the lower left corner to the upper right
corner of this chessboard and which moves up or right at each step.

A similar reasoning shows that the (possibly empty) region consisting of all squares containing an
A or D abuts the lower left corner of the chessboard and is separated from the (possibly empty) region
consisting of all squares containing a B or C by a path which goes from the upper left corner to the
lower right corner of this chessboard and which moves down or right at each step.
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Therefore the n × n chessboard is divided by these two paths into four (possibly empty) regions
that consist respectively of all squares containing A or B or C or D. Conversely, choosing two such
paths and filling the four regions separated by them with As, Bs, Cs and Ds counterclockwise starting
at the bottom results in a placement of the dominos on the original board satisfying the condition of
the question.

As each of these paths can be chosen in
(

2n

n

)
ways, there are

(
2n

n

)2

ways the dominos can be

placed.
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Problem 3. Let n, m be integers greater than 1, and let a1, a2, . . . , am be positive integers not
greater than nm. Prove that there exist positive integers b1, b2, . . . , bm not greater than n, such that

gcd(a1 + b1, a2 + b2, . . . , am + bm) < n,

where gcd(x1, x2, . . . , xm) denotes the greatest common divisor of x1, x2, . . . , xm.

(USA)

Solution 1: Suppose without loss of generality that a1 is the smallest of the ai. If a1 ≥ nm − 1, then
the problem is simple: either all the ai are equal, or a1 = nm − 1 and aj = nm for some j. In the first
case, we can take (say) b1 = 1, b2 = 2, and the rest of the bi can be arbitrary, and we have

gcd(a1 + b1, a2 + b2, . . . , am + bm) ≤ gcd(a1 + b1, a2 + b2) = 1.

In the second case, we can take b1 = 1, bj = 1, and the rest of the bi arbitrary, and again

gcd(a1 + b1, a2 + b2, . . . , am + bm) ≤ gcd(a1 + b1, aj + bj) = 1.

So from now on we can suppose that a1 ≤ nm − 2.
Now, let us suppose the desired b1, . . . , bm do not exist, and seek a contradiction. Then, for any

choice of b1, . . . , bm ∈ {1, . . . , n}, we have

gcd(a1 + b1, a2 + b2, . . . , am + bm) ≥ n.

Also, we have
gcd(a1 + b1, a2 + b2, . . . , am + bm) ≤ a1 + b1 ≤ nm + n − 2.

Thus there are at most nm − 1 possible values for the greatest common divisor. However, there
are nm choices for the m-tuple (b1, . . . , bm). Then, by the pigeonhole principle, there are two m-tuples
that yield the same values for the greatest common divisor, say d. But since d ≥ n, for each i there
can be at most one choice of bi ∈ {1, 2, . . . , n} such that ai + bi is divisible by d — and therefore there
can be at most one m-tuple (b1, b2, . . . , bm) yielding d as the greatest common divisor. This is the
desired contradiction.

Solution 2: Similarly to Solution 1 suppose that a1 ≤ nm−2. The gcd of a1+1, a2+1, a3+1, . . . , am+1
is co-prime with the gcd of a1 + 1, a2 + 2, a3 + 1, . . . , am + 1, thus a1 + 1 ≥ n2. Now change another 1
into 2 and so on. After m − 1 changes we get a1 + 1 ≥ nm which gives us a contradiction.

Solution 3: We will prove stronger version of this problem:
For m, n > 1, let a1, . . . , am be positive integers with at least one ai ≤ n2m−1 . Then there are

integers b1, . . . , bm, each equal to 1 or 2, such that gcd(a1 + b1, . . . , am + bm) < n.
Proof: Suppose otherwise. Then the 2m−1 integers gcd(a1 + b1, . . . , am + bm) with b1 = 1 and bi = 1
or 2 for i > 1 are all pairwise coprime, since for any two of them, there is some i > 1 with ai + 1
appearing in one and ai + 2 in the other. Since each of these 2m−1 integers divides a1 + 1, and each
is ≥ n with at most one equal to n, it follows that a1 + 1 ≥ n(n + 1)2m−1−1 so a1 ≥ n2m−1 . The same
is true for each ai, i = 1, . . . , n, a contradiction.
Remark: Clearly the n2m−1 bound can be strengthened as well.
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Problem 4. Determine whether there exists an infinite sequence a1, a2, a3, . . . of positive integers
which satisfies the equality

an+2 = an+1 +
√

an+1 + an

for every positive integer n.

(Japan)

Solution 1: The answer is no.
Suppose that there exists a sequence (an) of positive integers satisfying the given condition. We

will show that this will lead to a contradiction.
For each n ≥ 2 define bn = an+1 − an. Then, by assumption, for n ≥ 2 we get bn =

√
an + an−1 so

that we have

b2
n+1 − b2

n = (an+1 + an) − (an + an−1) = (an+1 − an) + (an − an−1) = bn + bn−1.

Since each an is a positive integer we see that bn is positive integer for n ≥ 2 and the sequence (bn) is
strictly increasing for n ≥ 3. Thus bn +bn−1 = (bn+1 −bn)(bn+1 +bn) ≥ bn+1 +bn, whence bn−1 ≥ bn+1
– a contradiction to increasing of the sequence (bi).

Thus we conclude that there exists no sequence (an) of positive integers satisfying the given
condition of the problem.

Solution 2: Suppose that such a sequence exists. We will calculate its members one by one and get
a contradiction.

From the equality a3 = a2 +
√

a2 + a1 it follows that a3 > a2. Denote positive integers
√

a3 + a2
by b and a3 by a, then we have

√
2a > b. Since a4 = a + b and a5 = a + b +

√
2a + b are positive

integers, then
√

2a + b is positive integer.
Consider a6 = a + b +

√
2a + b +

√
2a + 2b +

√
2a + b. Number c =

√
2a + 2b +

√
2a + b must be

positive integer, obviously it is greater than
√

2a + b. But

(
√

2a + b + 1)2 = 2a + b + 2
√

2a + b + 1 = 2a + 2b +
√

2a + b + (
√

2a + b − b) + 1 > c2.

So
√

2a + b < c <
√

2a + b + 1 which is impossible.

Solutions 3: We will show that there is no sequence (an) of positive integers which consists of N > 5
members and satisfies

an+2 = an+1 +
√

an+1 + an (1)

for all n = 1, . . . , N − 2. Moreover, we will describe all such sequences with five members.
Since every ai is a positive integer it follows from (1) that there exists such positive integer k

(obviously k depends on n) that
an+1 + an = k2. (2)

From (1) we have (an+2 − an+1)2 = an+1 + an, consider this equality as a quadratic equation with
respect to an+1:

a2
n+1 − (2an+2 + 1)an+1 + a2

n+2 − an = 0.

Obviously its solutions are
(
an+1

)
1,2 = 2an+2 + 1 ± √

D

2
, where

D = 4(an + an+2) + 1. (3)

Since an+2 > an+1 we have

an+1 = 2an+2 + 1 − √
D

2
.
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From the last equality, using that an+1 and an+2 are positive integers, we conclude that D is a square
of some odd number i.e. D = (2m + 1)2 for some positive integer m ∈ N, substitute this into (3):

an + an+2 = m(m + 1). (4)

Now adding an to both sides of (1) and using (2) and (4) we get m(m + 1) = k2 + k whence m = k.
So {

an + an+1 = k2,

an + an+2 = k2 + k
(5)

for some positive integer k (recall that k depends on n).
Write equations (5) for n = 2 and n = 3, then for some positive integers k and � we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2 + a3 = k2,

a2 + a4 = k2 + k,

a3 + a4 = �2,

a3 + a5 = �2 + �.

(6)

Solution of this linear system is

a2 = 2k2 − �2 + k

2
, a3 = �2 − k

2
, a4 = �2 + k

2
, a5 = �2 + 2� + k

2
. (7)

From a2 < a4 we obtain k2 < �2 hence k < �.
Consider a6:

a6 = a5 +
√

a5 + a4 = a5 +
√

�2 + � + k .

Since 0 < k < l we have �2 < �2 + � + k < (� + 1)2. So a6 cannot be integer i.e. there is no such
sequence with six or more members.

To find all required sequences with five members we must find positive integers a2, a3, a4 and a5
which satisfy (7) for some positive integers k < �. Its clear that k and � must be of the same parity.
Vise versa, let positive integers k, � be of the same parity and satisfy k < � then from (7) we get
integers a2, a3, a4 and a5 then a1 = (a3 − a2)2 − a2 and it remains to verify that a1 and a2 are positive
i.e. 2k2 + k > �2 and 2(�2 − k2 − k)2 > 2k2 − �2 + k.

Solution 4: It is easy to see that (an) is increasing for large enough n. Hence

an+1 < an +
√

2an (1)

and
an < an−1 +

√
2an−1. (2)

Lets define bn = an + an−1. Using AM-QM inequality we have
√

2an +
√

2an−1
2

≤
√

2an + 2an−1
2

. (3)

Adding (1), (2) and using (3):

bn+1 < bn +
√

2an +
√

2an−1 ≤ bn + 2
√

bn.

Let bn = m2. Since (bn) is increasing for large enough n, we have:

m2 < bn+1 < m2 + 2m < (m + 1)2.

So, bn+1 can’t be a perfect square, so we get contradiction.
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Problem 5. Let m, n be positive integers with m > 1. Anastasia partitions the integers 1, 2, . . . , 2m
into m pairs. Boris then chooses one integer from each pair and finds the sum of these chosen integers.
Prove that Anastasia can select the pairs so that Boris cannot make his sum equal to n.

(Netherlands)

Solution 1A: Define the following ordered partitions:

P1 = ({1, 2}, {3, 4}, . . . , {2m − 1, 2m}),
P2 = ({1, m + 1}, {2, m + 2}, . . . , {m, 2m}),
P3 = ({1, 2m}, {2, m + 1}, {3, m + 2}, . . . , {m, 2m − 1}).

For each Pj we will compute the possible values for the expression s = a1 + . . .+am, where ai ∈ Pj,i

are the chosen integers. Here, Pj,i denotes the i-th coordinate of the ordered partition Pj .
We will denote by σ the number

∑m
i=1 i = (m2 + m)/2.

• Consider the partition P1 and a certain choice with corresponding sum s. We find that

m2 =
m∑

i=1
(2i − 1) ≤ s ≤

m∑
i=1

2i = m2 + m.

Hence, if n < m2 or n > m2 + m, this partition gives a positive answer.

• Consider the partition P2 and a certain choice with corresponding s. We find that

s ≡
m∑

i=1
i ≡ σ (mod m).

Hence, if m2 ≤ n ≤ m2 + m and n �≡ σ (mod m), this partition solves the problem.

• Consider the partition P3 and a certain choice with corresponding s. We set

di =
{

0 if ai = i
1, if ai �= i.

We also put d =
∑m

i=1 di, and note that 0 ≤ d ≤ m. Note also that if ai �= i, then ai ≡ i − 1
(mod m). Hence, for all ai ∈ P3,i it holds that

ai ≡ i − di (mod m).

Hence,

s ≡
m∑

i=1
ai ≡

m∑
i=1

(i − di) ≡ σ − d (mod m),

which can only be congruent to σ modulo m if all di are equal, which forces s = (m2 + m)/2 or
s = (3m2 + m)/2. Since m > 1, it holds that

m2 + m

2
< m2 < m2 + m <

3m2 + m

2
.

Hence if m2 ≤ n ≤ m2 + m and n ≡ σ (mod m), then s cannot be equal to n, so partition P3
suffices for such n.
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Note that all n are treated in one of the cases above, so we are done.

Common notes for solutions 1B and 1C: Given the analysis of P1 and P2 as in the solution 1A,
we may conclude (noting that σ ≡ m(m + 1)/2 (mod m)) that if m is odd then m2 and m2 + m are
the only candidates for counterexamples n, while if m is even then m2 +

m

2
is the only candidate.

There are now various ways to proceed as alternatives to the partition P3.

Solution 1B: Consider the partition ({1, m+2}, {2, m+3}, . . . , {m−1, 2m}, {m, m+1}). We consider
possible sums mod m+1. For the first m−1 pairs, the elements of each pair are congruent mod m+1,
so the sum of one element of each pair is (mod m+1) congruent to

1
2

m(m+1)−m, which is congruent

to 1 if m + 1 is odd and 1 + m + 1
2

if m + 1 is even. Now the elements of the last pair are congruent
to −1 and 0, so any achievable value of n is congruent to 0 or 1 if m + 1 is odd, and to 0 or 1 plus
m + 1

2
if m + 1 is even. If m is even then m2 + m

2
≡ 1 + m

2
, which is not congruent to 0 or 1. If m is

odd then m2 ≡ 1 and m2 + m ≡ 0, neither of which can equal 0 or 1 plus
m + 1

2
.

Solution 1C: Similarly, consider the partition ({1, m}, {2, m+1}, . . . , {m−1, 2m−2}, {2m−1, 2m}),
this time considering sums of elements of pairs mod m − 1. If m − 1 is odd, the sum is congruent to
1 or 2; if m − 1 is even, to 1 or 2 plus m − 1

2
. If m is even then m2 + m

2
≡ 1 + m

2
, and this can only

be congruent to 1 or 2 when m = 2. If m is odd, m2 and m2 + m are congruent to 1 and 2, and these
can only be congruent to 1 or 2 plus

m − 1
2

when m = 3. Now the cases of m = 2 and m = 3 need
considering separately (by finding explicit partitions excluding each n).

Solution 2: This solution does not use modulo arguments. Use only P1 from the solution 1A to
conclude that m2 ≤ n ≤ m2 + m. Now consider the partition ({1, 2m}, {2, 3}, {4, 5}, . . . , {2m −
2, 2m − 1}). If 1 is chosen from the first pair, the sum is at most m2; if 2m is chosen, the sum
is at least m2 + m. So either n = m2 or n = m2 + m. Now consider the partition ({1, 2m −
1}, {2, 2m}, {3, 4}, {5, 6}, . . . , {2m − 3, 2m − 2}). Sums of one element from each of the last m − 2
pairs are in the range from (m − 2)m = m2 − 2m to (m − 2)(m + 1) = m2 − m − 2 inclusive. Sums
of one element from each of the first two pairs are 3, 2m + 1 and 4m − 1. In the first case we have
n ≤ m2−m+1 < m2, in the second m2+1 ≤ n ≤ m2+m−1 and in the third n ≥ m2+2m−1 > m2+m.
So these three partitions together have eliminated all n.
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Problem 6. Let H be the orthocenter and G be the centroid of acute-angled triangle �ABC with
AB �= AC. The line AG intersects the circumcircle of �ABC at A and P. Let P ′ be the reflection of
P in the line BC. Prove that ∠CAB = 60◦ if and only if HG = GP ′.

(Ukraine)

�
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�
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�
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�
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�
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�M�O � O′

�
P

�

P ′

ω ω′

Solution 1: Let ω be the circumcircle of �ABC. Reflecting ω in line BC, we obtain circle ω′ which,
obviously, contains points H and P ′. Let M be the midpoint of BC. As triangle �ABC is acute-angled,
then H and O lie inside this triangle.

Let us assume that ∠CAB = 60◦. Since

∠COB = 2∠CAB = 120◦ = 180◦ − 60◦ = 180◦ − ∠CAB = ∠CHB,

hence O lies on ω′. Reflecting O in line BC, we obtain point O′ which lies on ω and this point is
the center of ω′. Then OO′ = 2OM = 2R cos∠CAB = AH, so AH = OO′ = HO′ = AO = R,
where R is the radius of ω and, naturally, of ω′. Then quadrilateral AHO′O is a rhombus, so A and
O′ are symmetric to each other with respect to HO. As H, G and O are collinear (Euler line), then
∠GAH = ∠HO′G. Diagonals of quadrilateral GOPO′ intersects at M. Since ∠BOM = 60◦, so

OM = MO′ = ctg 60◦ · MB =
MB√

3
.

As 3MO ·MO′ = MB2 = MB ·MC = MP ·MA = 3MG ·MP, then GOPO′ is a cyclic. Since BC is a
perpendicular bisector of OO′, so the circumcircle of quadrilateral GOPO′ is symmetrical with respect
to BC. Thus P ′ also belongs to the circumcircle of GOPO′, hence ∠GO′P ′ = ∠GPP ′. Note that
∠GPP ′ = ∠GAH since AH||PP ′. And as it was proved ∠GAH = ∠HO′G, then ∠HO′G = ∠GO′P ′.
Thus triangles �HO′G and �GO′P ′ are equal and hence HG = GP ′.

Now we will prove that if HG = GP ′ then ∠CAB = 60◦. Reflecting A with respect to M, we get A′.
Then, as it was said in the first part of solution, points B, C, H and P ′ belong to ω′. Also it is clear that
A′ belongs to ω′. Note that HC ⊥ CA′ since AB||CA′ and hence HA′ is a diameter of ω′. Obviously,
the center O′ of circle ω′ is midpoint of HA′. From HG = GP ′ it follows that �HGO′ is equal to
�P ′GO′. Therefore H and P ′ are symmetric with respect to GO′. Hence GO′ ⊥ HP ′ and GO′||A′P ′.
Let HG intersect A′P ′ at K and K �≡ O since AB �= AC. We conclude that HG = GK, because
line GO′ is midline of the triangle �HKA′. Note that 2GO = HG. since HO is Euler line of triangle
ABC. So O is midpoint of segment GK. Because of ∠CMP = ∠CMP ′, then ∠GMO = ∠OMP ′.
Line OM, that passes through O′, is an external angle bisector of ∠P ′MA′. Also we know that
P ′O′ = O′A′, then O′ is the midpoint of arc P ′MA′ of the circumcircle of triangle �P ′MA′. It
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�

A

�

B

�
C

�
G

�
H

�

M
�

O
�

O′

�
P

�
P ′

� A′

�

K�
T

ω′

follows that quadrilateral P ′MO′A′ is cyclic, then ∠O′MA′ = ∠O′P ′A′ = ∠O′A′P ′. Let OM and
P ′A′ intersect at T. Triangles �T O′A′ and �A′O′M are similar, hence O′A′/O′M = O′T/O′A′. In
the other words, O′M · O′T = O′A′2. Using Menelaus’ theorem for triangle �HKA′ and line T O′, we
obtain that

A′O′

O′H
· HO

OK
· KT

T A′ = 3 · KT

T A′ = 1.

It follows that KT/T A′ = 1/3 and KA′ = 2KT. Using Menelaus’ theorem for triangle T O′A′ and line
HK we get that

1 =
O′H
HA′ · A′K

KT
· T O

OO′ =
1
2

· 2 · T O

OO′ =
T O

OO′ .

It means that T O = OO′, so O′A′2 = O′M · O′T = OO′2. Hence O′A′ = OO′ and, consequently,
O ∈ ω′. Finally we conclude that 2∠CAB = ∠BOC = 180◦ − ∠CAB, so ∠CAB = 60◦.

�

A

�

B

�
C

�

G
� G′

�

H

� F

�

H ′

�D�O � O′

�
P

�

P ′

ω

δ

ε �

O′

�
H

�
O

�
F

�
G

�

D

ε

Solution 2: Let O′ and G′ denote the reflection of O and G, respectively, with respect to the line
BC. We then need to show ∠CAB = 60◦ iff G′H ′ = G′P. Note that �H ′OP is isosceles and hence
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G′H ′ = G′P is equivalent to G′ lying on the bisector ∠H ′OP. Let ∠H ′AP = ε. By the assumption
AB �= AC, we have ε �= 0. Then ∠H ′OP = 2∠H ′AP = 2ε, hence G′H ′ = G′P iff ∠G′OH ′ = ε. But
∠GO′H = ∠G′OH ′. Let D be the midpoint of OO′. It is known that ∠GDO = ∠GAH = ε. Let F be
the midpoint of HG. Then HG = FO (Euler line). Let ∠GO′H = δ. We then have to show δ = ε iff
∠CAB = 60◦. But by similarity (�GDO ∼ �FO′O) we have ∠FO′O = ε. Consider the circumcircles
of the triangles FO′O and GO′H. By the sine law and since the segments HG and FO are of equal
length we deduce that the circumcircles of the triangles FO′O and GO′H are symmetric with respect
to the perpendicular bisector of the segment FG iff δ = ε. Obviously, O′ is the common point of
these two circles. Hence O′ must be fixed after the symmetry about the perpendicular bisector of the
segment FG iff δ = ε so we have ε = δ iff �HOO′ is isosceles. But HO′ = H ′O = R, and so

ε = δ ⇐⇒ OO′ = R ⇐⇒ OD = R

2
⇐⇒ cos∠CAB = 1

2
⇐⇒ ∠CAB = 60◦.

Solution 3: Let H ′ and G′ denote the reflection of points H and G with respect to the line BC. It
is known that H ′ belongs to the circumcircle of �ABC. The equality HG = GP ′ is equivalent to
H ′G′ = G′P. As in the Solution 2, it is equivalent to the statement that point G′ belongs to the
perpendicular bisector of H ′P, which is equivalent to OG′ ⊥ H ′P , where O is the circumcenter of
�ABC.

Let points A(a), B(b), and C(c = −b) belong to the unit circle in the complex plane. Point G
have coordinate g = (a + b − b)/3. Since BC is parallel to the real axis point H ′ have coordinate
h′ = a = 1/a.

Point P (p) belongs to the unit circle, so p = 1/p. Since a, p, g are collinear we have p − a

g − a
=(

p − a

g − a

)
. After computation we get p = g − a

1 − ga
. Since G′(g) is the reflection of G with respect to the

chord BC, we have g′ = b + (−b) − b(−b)g = b − b + g. Let b − b = d. We have d = −d. So

g =
a + d

3
, g =

a − d

3
, g′ = d + g =

a + 2d

3
, g′ =

a − 2d

3
and p =

g − a

1 − ga
=

d − 2a

2 + ad
. (1)

It is easy to see that OG′ ⊥ H ′P ′ is equivalent to

g′

h′ − p
= −

(
g′

h′ − p

)
= − g′

1
h′ − 1

p

=
g′h′p
h′ − p

since h′ and p belong to the unit circle (note that H ′ �= P because AB �= AC). This is equivalent
to g′ = g′h′p and from (1), after easy computations, this is equivalent to a2g2 + a2 + d2 + 1 =
(a2 + 1)(d2 + 1) = 0.

We cannot have a2 + 1 = 0, because then a = ±i, but AB �= AC. Hence d = b − b = ±i, and the
pair {b, c = −b} is either {−√

3/2 + i/2,
√

3/2 + i/2} or {−√
3/2 − i/2,

√
3/2 − i/2}. Both cases are

equivalent to ∠BAC = 60◦ which completes the proof.
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