Language: English

Day: 1

Problem 1. Let $\triangle A B C$ be an acute-angled triangle, and let D be the foot of the altitude from C. The angle bisector of $\angle A B C$ intersects $C D$ at E and meets the circumcircle ω of triangle $\triangle A D E$ again at F. If $\angle A D F=45^{\circ}$, show that $C F$ is tangent to ω.

Problem 2. A domino is a 2×1 or 1×2 tile. Determine in how many ways exactly n^{2} dominoes can be placed without overlapping on a $2 n \times 2 n$ chessboard so that every 2×2 square contains at least two uncovered unit squares which lie in the same row or column.

Problem 3. Let n, m be integers greater than 1 , and let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers not greater than n^{m}. Prove that there exist positive integers $b_{1}, b_{2}, \ldots, b_{m}$ not greater than n, such that

$$
\operatorname{gcd}\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{m}+b_{m}\right)<n,
$$

where $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ denotes the greatest common divisor of $x_{1}, x_{2}, \ldots, x_{m}$.

