Language: English

Day:

Problem 1. Determine all real constants t such that whenever a, b, c are the lengths of the sides of a triangle, then so are $a^{2}+b c t, b^{2}+c a t, c^{2}+a b t$.

Problem 2. Let D and E be points in the interiors of sides $A B$ and $A C$, respectively, of a triangle $A B C$, such that $D B=B C=C E$. Let the lines $C D$ and $B E$ meet at F. Prove that the incentre I of triangle $A B C$, the orthocentre H of triangle $D E F$ and the midpoint M of the $\operatorname{arc} B A C$ of the circumcircle of triangle $A B C$ are collinear.

Problem 3. We denote the number of positive divisors of a positive integer m by $d(m)$ and the number of distinct prime divisors of m by $\omega(m)$. Let k be a positive integer. Prove that there exist infinitely many positive integers n such that $\omega(n)=k$ and $d(n)$ does not divide $d\left(a^{2}+b^{2}\right)$ for any positive integers a, b satisfying $a+b=n$.

