Problem 4. For a sequence $a_{1}<a_{2}<\cdots<a_{n}$ of integers, a pair (a_{i}, a_{j}) with $1 \leq i<j \leq n$ is called interesting if there exists a pair $\left(a_{k}, a_{\ell}\right)$ of integers with $1 \leq k<\ell \leq n$ such that

$$
\frac{a_{\ell}-a_{k}}{a_{j}-a_{i}}=2 .
$$

For each $n \geq 3$, find the largest possible number of interesting pairs in a sequence of length n.

Problem 5. Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the following conditions are true for every pair of positive integers (x, y) :
(i) x and $f(x)$ have the same number of positive divisors.
(ii) If x does not divide y and y does not divide x, then

$$
\operatorname{gcd}(f(x), f(y))>f(\operatorname{gcd}(x, y))
$$

Here $\operatorname{gcd}(m, n)$ is the largest positive integer that divides both m and n.

Problem 6. Find all positive integers d for which there exists a degree d polynomial P with real coefficients such that there are at most d different values among $P(0), P(1), P(2), \ldots, P\left(d^{2}-d\right)$.

