

Problem 1. Two different integers u and v are written on a board. We perform a sequence of steps. At each step we do one of the following two operations:
(i) If a and b are different integers on the board, then we can write $a+b$ on the board, if it is not already there.
(ii) If a, b and c are three different integers on the board, and if an integer x satisfies $a x^{2}+b x+c=0$, then we can write x on the board, if it is not already there.

Determine all pairs of starting numbers (u, v) from which any integer can eventually be written on the board after a finite sequence of steps.

Problem 2. Let $A B C$ be a triangle with $A C>A B$, and denote its circumcircle by Ω and incentre by I. Let its incircle meet sides $B C, C A, A B$ at D, E, F respectively. Let X and Y be two points on minor arcs $\overparen{D F}$ and $\overparen{D E}$ of the incircle, respectively, such that $\angle B X D=\angle D Y C$. Let line $X Y$ meet line $B C$ at K. Let T be the point on Ω such that $K T$ is tangent to Ω and T is on the same side of line $B C$ as A. Prove that lines $T D$ and $A I$ meet on Ω.

Problem 3. We call a positive integer n peculiar if, for any positive divisor d of n, the integer $d(d+1)$ divides $n(n+1)$. Prove that for any four different peculiar positive integers A, B, C and D, the following holds:

$$
\operatorname{gcd}(A, B, C, D)=1
$$

Here $\operatorname{gcd}(A, B, C, D)$ is the largest positive integer that divides all of A, B, C and D.

