Problem 4. Turbo the snail sits on a point on a circle with circumference 1. Given an infinite sequence of positive real numbers $c_{1}, c_{2}, c_{3}, \ldots$, Turbo successively crawls distances $c_{1}, c_{2}, c_{3}, \ldots$ around the circle, each time choosing to crawl either clockwise or counterclockwise.

For example, if the sequence $c_{1}, c_{2}, c_{3}, \ldots$ is $0.4,0.6,0.3, \ldots$, then Turbo may start crawling as follows:

Determine the largest constant $C>0$ with the following property: for every sequence of positive real numbers $c_{1}, c_{2}, c_{3}, \ldots$ with $c_{i}<C$ for all i, Turbo can (after studying the sequence) ensure that there is some point on the circle that it will never visit or crawl across.

Problem 5. We are given a positive integer $s \geqslant 2$. For each positive integer k, we define its twist k^{\prime} as follows: write k as $a s+b$, where a, b are non-negative integers and $b<s$, then $k^{\prime}=b s+a$. For the positive integer n, consider the infinite sequence d_{1}, d_{2}, \ldots where $d_{1}=n$ and d_{i+1} is the twist of d_{i} for each positive integer i.

Prove that this sequence contains 1 if and only if the remainder when n is divided by $s^{2}-1$ is either 1 or s.

Problem 6. Let $A B C$ be a triangle with circumcircle Ω. Let S_{b} and S_{c} respectively denote the midpoints of the arcs $A C$ and $A B$ that do not contain the third vertex. Let N_{a} denote the midpoint of arc $B A C$ (the arc $B C$ containing A). Let I be the incentre of $A B C$. Let ω_{b} be the circle that is tangent to $A B$ and internally tangent to Ω at S_{b}, and let ω_{c} be the circle that is tangent to $A C$ and internally tangent to Ω at S_{c}. Show that the line $I N_{a}$, and the line through the intersections of ω_{b} and ω_{c}, meet on Ω.

The incentre of a triangle is the centre of its incircle, the circle inside the triangle that is tangent to all three sides.

