

Language: English

Day: 2

Sunday, April 16, 2023

Problem 4. Turbo the snail sits on a point on a circle with circumference 1. Given an infinite sequence of positive real numbers c_1, c_2, c_3, \ldots , Turbo successively crawls distances c_1, c_2, c_3, \ldots around the circle, each time choosing to crawl either clockwise or counterclockwise.

For example, if the sequence c_1, c_2, c_3, \ldots is $0.4, 0.6, 0.3, \ldots$, then Turbo may start crawling as follows:

Determine the largest constant C > 0 with the following property: for every sequence of positive real numbers c_1, c_2, c_3, \ldots with $c_i < C$ for all *i*, Turbo can (after studying the sequence) ensure that there is some point on the circle that it will never visit or crawl across.

Problem 5. We are given a positive integer $s \ge 2$. For each positive integer k, we define its *twist* k' as follows: write k as as + b, where a, b are non-negative integers and b < s, then k' = bs + a. For the positive integer n, consider the infinite sequence d_1, d_2, \ldots where $d_1 = n$ and d_{i+1} is the twist of d_i for each positive integer i.

Prove that this sequence contains 1 if and only if the remainder when n is divided by $s^2 - 1$ is either 1 or s.

Problem 6. Let ABC be a triangle with circumcircle Ω . Let S_b and S_c respectively denote the midpoints of the arcs AC and AB that do not contain the third vertex. Let N_a denote the midpoint of arc BAC (the arc BC containing A). Let I be the incentre of ABC. Let ω_b be the circle that is tangent to AB and internally tangent to Ω at S_b , and let ω_c be the circle that is tangent to AC and internally tangent to Ω at S_c . Show that the line IN_a , and the line through the intersections of ω_b and ω_c , meet on Ω .

The incentre of a triangle is the centre of its incircle, the circle inside the triangle that is tangent to all three sides.

Language: English

Time: 4 hours and 30 minutes Each problem is worth 7 points

The problems are confidential until Sunday 16 April, 22:00 UTC (00:00 (Monday) Central European Summer Time).