

Language: Spanish

Day: 1

Sábado, 15 de abril de 2023

Problema 1. Se tienen $n \ge 3$ números reales positivos a_1, a_2, \ldots, a_n . Para cada $1 \le i \le n$ se define $b_i = \frac{a_{i-1} + a_{i+1}}{a_i}$, donde $a_0 = a_n$ y $a_{n+1} = a_1$. Suponga que para cada $1 \le i \le n$ y cada $1 \le j \le n$ se tiene que $a_i \le a_j$ si y sólo si $b_i \le b_j$.

Demuestre que $a_1 = a_2 = \cdots = a_n$.

Problema 2. Sea ABC un triángulo acutángulo y sea D el punto sobre su circunferencia circunscrita tal que AD sea un diámetro. Se escogen puntos K y L en los segmentos AB y AC respectivamente, tales que DK y DL son tangentes al círculo AKL.

Demuestre que la recta KL pasa por el ortocentro de ABC.

El ortocentro de un triángulo es el punto de intersección de sus alturas.

Problema 3. Sea k un entero positivo. Alexa tiene un diccionario \mathcal{D} que contiene algunas palabras de k letras formadas sólo con las letras A y B. En cada casilla de un tablero de tamaño $k \times k$, Alexa quiere escribir sólo la letra A o la letra B, de tal manera que cada columna contenga una palabra de \mathcal{D} cuando es leída de arriba a abajo y cada fila contenga una palabra de \mathcal{D} cuando es leída de izquierda a derecha.

¿Cuál es el menor entero m tal que si \mathcal{D} contiene por lo menos m palabras diferentes, entonces Alexa siempre puede llenar su tablero de esta manera, sin importar cuáles son las palabras que están en el diccionario \mathcal{D} ?

Language: Spanish

Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos

Los problemas son confidenciales hasta el domingo 16 de abril a las 22:00 UTC (00:00 del lunes en Eslovenia).