Problem 1. There are $n \geqslant 3$ positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$. For each $1 \leqslant i \leqslant n$ we let $b_{i}=\frac{a_{i-1}+a_{i+1}}{a_{i}}$ (here we define a_{0} to be a_{n} and a_{n+1} to be a_{1}). Assume that for all i and j in the range 1 to n, we have $a_{i} \leqslant a_{j}$ if and only if $b_{i} \leqslant b_{j}$.

Prove that $a_{1}=a_{2}=\cdots=a_{n}$.

Problem 2. We are given an acute triangle $A B C$. Let D be the point on its circumcircle such that $A D$ is a diameter. Suppose that points K and L lie on segments $A B$ and $A C$, respectively, and that $D K$ and $D L$ are tangent to circle $A K L$.
Show that line $K L$ passes through the orthocentre of $A B C$.
The orthocentre of a triangle is the point of intersection of its altitudes.

Problem 3. Let k be a positive integer. Lexi has a dictionary \mathcal{D} consisting of some k-letter strings containing only the letters A and B. Lexi would like to write either the letter A or the letter B in each cell of a $k \times k$ grid so that each column contains a string from \mathcal{D} when read from top-to-bottom and each row contains a string from \mathcal{D} when read from left-to-right.

What is the smallest integer m such that if \mathcal{D} contains at least m different strings, then Lexi can fill her grid in this manner, no matter what strings are in \mathcal{D} ?

