Problem 4. Given a positive integer \(n \geq 2 \), determine the largest positive integer \(N \) for which there exist \(N + 1 \) real numbers \(a_0, a_1, \ldots, a_N \) such that

\[
(1) \quad a_0 + a_1 = -\frac{1}{n}, \text{ and}
\]

\[
(2) \quad (a_k + a_{k-1})(a_k + a_{k+1}) = a_{k-1} - a_{k+1} \quad \text{for} \quad 1 \leq k \leq N - 1.
\]

Problem 5. For all positive integers \(n, k \), let \(f(n, 2k) \) be the number of ways an \(n \times 2k \) board can be fully covered by \(nk \) dominoes of size \(2 \times 1 \). (For example, \(f(2, 2) = 2 \) and \(f(3, 2) = 3 \).) Find all positive integers \(n \) such that for every positive integer \(k \), the number \(f(n, 2k) \) is odd.

Problem 6. Let \(ABCD \) be a cyclic quadrilateral with circumcentre \(O \). Let the internal angle bisectors at \(A \) and \(B \) meet at \(X \), the internal angle bisectors at \(B \) and \(C \) meet at \(Y \), the internal angle bisectors at \(C \) and \(D \) meet at \(Z \), and the internal angle bisectors at \(D \) and \(A \) meet at \(W \). Further, let \(AC \) and \(BD \) meet at \(P \). Suppose that the points \(X, Y, Z, W, O \) and \(P \) are distinct.

Prove that \(O, X, Y, Z \) and \(W \) lie on the same circle if and only if \(P, X, Y, Z \) and \(W \) lie on the same circle.

Language: English

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Saturday 9 April, 22:00 UTC (15:00 Pacific Daylight Time, 00:00 (Sunday) Central European Summer Time, 08:00 (Sunday) Australian Eastern Standard Time).