Problem 4. Given a positive integer $n \geq 2$, determine the largest positive integer N for which there exist $N+1$ real numbers $a_{0}, a_{1}, \ldots, a_{N}$ such that
(1) $a_{0}+a_{1}=-\frac{1}{n}$, and
(2) $\left(a_{k}+a_{k-1}\right)\left(a_{k}+a_{k+1}\right)=a_{k-1}-a_{k+1}$ for $1 \leq k \leq N-1$.

Problem 5. For all positive integers n, k, let $f(n, 2 k)$ be the number of ways an $n \times 2 k$ board can be fully covered by $n k$ dominoes of size 2×1. (For example, $f(2,2)=2$ and $f(3,2)=3$.)
Find all positive integers n such that for every positive integer k, the number $f(n, 2 k)$ is odd.

Problem 6. Let $A B C D$ be a cyclic quadrilateral with circumcentre O. Let the internal angle bisectors at A and B meet at X, the internal angle bisectors at B and C meet at Y, the internal angle bisectors at C and D meet at Z, and the internal angle bisectors at D and A meet at W. Further, let $A C$ and $B D$ meet at P. Suppose that the points X, Y, Z, W, O and P are distinct.
Prove that O, X, Y, Z and W lie on the same circle if and only if P, X, Y, Z and W lie on the same circle.

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Saturday 9 April, 22:00 UTC (15:00 Pacific Daylight Time, 00:00 (Sunday) Central European Summer Time, 08:00 (Sunday) Australian Eastern Standard Time).

