
Solutions of EGMO 2021 

 

 

Problem 1. According to Anna, the number 2021 is fantabulous. She states that if any element of the 

set {𝑚, 2𝑚 + 1, 3𝑚} is fantabulous for a positive integer 𝑚, then they are all fantabulous. Is the number 

20212021 fantabulous? 

(Australia, Angelo Di Pasquale) 

Answer:  Yes 

 

Solution 1. 

     Consider the sequence of positive integers 𝑚, 3𝑚, 6𝑚 + 1, 12𝑚 + 3, 4𝑚 + 1, 2𝑚. Since each number 

in the sequence is fantabulous if and only if the next one is, we deduce that 𝑚 is fantabulous if and only 

if 2𝑚 is fantabulous. 

     Combined with the fact that 𝑚 is fantabulous if and only if 2𝑚 + 1 is fantabulous, this implies that 

𝑚 > 1 is fantabulous if and only if 𝑓(𝑚) = [
𝑚

2
] is fantabulous. We can apply 𝑓 sufficiently many times 

to any positive integer 𝑛 to conclude that 𝑛 is fantabulous if and only if 1 is fantabulous. Therefore, the 

fact that 2021 is fantabulous implies that 1 is fantabulous, which in turn implies that 20212021  is 

fantabulous. 

 

 

Solution 2. 

     Let 𝑚 > 1 be a fantabulous number. Note that at least one of the following four cases must hold.  

 

∎ Case 1. The number 𝑚 is odd; 

We have 𝑚 = 2𝑎 + 1 for some positive integer 𝑎, so 𝑎 < 𝑚 is also fantabulous. 

 

∎ Case 2. The number 𝑚 is a multiple of 3; 

We have 𝑚 = 3𝑎 for some positive integer 𝑎, so 𝑎 < 𝑚 is also fantabulous. 

 

∎ Case 3. The number 𝑚 is 4 modulo 6; 

We have 𝑚 = 6𝑎 − 2 for some positive integer 𝑎. We have the sequence of fantabulous 

numbers 

(6𝑎 − 2) → (12𝑎 − 3) → (4𝑎 − 1), 

so 4𝑎 − 1 < 𝑚 is also fantabulous. 

 



∎ Case 4. The number 𝑚 is 2 modulo 6; 

We have 𝑚 = 6𝑎 + 2 for some positive integer 𝑎. We have the sequence of fantabulous 

numbers 

(6𝑎 + 2) → (12𝑎 + 5) → (36𝑎 + 15) → (18𝑎 + 7) → (9𝑎 + 3) → (3𝑎 + 1), 

so 3𝑎 + 1 < 𝑚 is also fantabulous. 

 

     In all cases, we see that there is another fantabulous number less than 𝑚. Since 2021 is fantabulous, 

it follows that 1 is fantabulous. 

     Observe that a number 𝑚 is not fantabulous if and only if all of the elements of the set 

{𝑚, 2𝑚 + 1, 3𝑚} are not fantabulous. So, the argument above shows that if there exists a positive 

integer that is not fantabulous, then 1 would not be fantabulous either. This is a contradiction, so all 

positive integers are fantabulous and, in particular, 20212021  is fantabulous. 

 

 

Solution 3. 

     The following transformations show that 𝑎 is fantabulous if and only if 3𝑎, 3𝑎 + 1 or 3𝑎 + 2 are 

fantabulous. 

𝑎 → 3𝑎  

𝑎 → 2𝑎 + 1 → 6𝑎 + 3 → 3𝑎 + 1  

𝑎 → 2𝑎 + 1 → 4𝑎 + 3 → 12𝑎 + 9 → 36𝑎 + 27 → 18𝑎 + 13 → 9𝑎 + 6 → 3𝑎 + 2  

This implies that 𝑎 ≥ 3 is fantabulous if and only if 𝑓(𝑎) = [
𝑎

3
]  is fantabulous. We can use this to 

deduce that 1 and 2 are fantabulous from the fact that 2021 is fantabulous in the following way: 

2021 → 673 → 224 → 74 → 24 → 8 → 2 → 5 → 1 

     We can apply 𝑓 sufficiently many times to any positive integer 𝑛 to arrive at the number 1 or 2. It 

follows that every positive integer is fantabulous, so 20212021  is fantabulous. 

 

 

 

 
Problem 2. Find all functions 𝑓: ℚ → ℚ such that the equation 

 
𝑓(𝑥𝑓(𝑥) +  𝑦) =  𝑓(𝑦) +  𝑥2 

holds for all rational numbers 𝑥 and 𝑦.  

Here, ℚ denotes the set of rational numbers. 
(Slovakia, Patrik Bak) 

 

Answer:  𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = −𝑥. 

 



Solution.   Denote the equation from the statement by (1). Let 𝑥𝑓(𝑥) = 𝐴 and 𝑥2 = 𝐵.  The equation 

(1) is of the form 

𝑓(𝐴 + 𝑦) = 𝑓(𝑦) + 𝐵 

Also, if we put 𝑦 → −𝐴 + 𝑦, we have 𝑓(𝐴 − 𝐴 + 𝑦) = 𝑓(−𝐴 + 𝑦) + 𝐵. Therefore 

𝑓(−𝐴 + 𝑦) = 𝑓(𝑦) − 𝐵  

We can easily show that for any integer 𝑛 we even have 

𝑓(𝑛𝐴 +  𝑦)  =  𝑓(𝑦)  +  𝑛𝐵                                                              (2) 

Indeed, it’s trivially true for 𝑛 = 0 and if this holds true for some integer 𝑛, then 

𝑓((𝑛 + 1)𝐴 + 𝑦) = 𝑓(𝐴 + 𝑦 + 𝑛𝐴) = 𝑓(𝑛𝑦 + 𝐴) + 𝐵 = 𝑓(𝑦) + 𝑛𝐵 + 𝐵 = 𝑓(𝑦) + (𝑛 + 1)𝐵  

and 

𝑓((𝑛 − 1)𝐴 + 𝑦) = 𝑓(−𝐴 + 𝑛𝐴 + 𝑦) = 𝑓(𝑛𝐴 + 𝑦) − 𝐵 = 𝑓(𝑦) +  𝑛𝐵 − 𝐵 = 𝑓(𝑦) + (𝑛 − 1)𝐵. 

So, equation (2) follows from the induction on 𝑛. 

Now we can say that for any integer 𝑘 it holds 

𝑓(𝑛𝑥𝑓(𝑥) + 𝑦) = 𝑓(𝑦) + 𝑛𝑥2                                                            (3) 

If 𝑦 is given, then 𝑓(𝑦) + 𝑛𝑥2 can be any rational number, since 𝑛𝑥2 can be any rational number. If it 

is supposed to be 
𝑝

𝑞
, where 𝑞 ≠ 0, then we may take 𝑛 = 𝑝𝑞, and 𝑥 =

1

𝑞
. Therefore 𝑓 is surjective on ℚ. 

So there’s a rational number 𝑐 such that 𝑓(𝑐) = 0. Be putting 𝑥 = 𝑐 into (1) we immediately get 𝑐 = 0, 

i.e. 𝑓(0)  =  0. Therefore, 𝑓(𝑥) = 0 if and only if 𝑥 = 0. 

For any integer 𝑛 and for any rational 𝑥, 𝑦 it holds 

𝑓(𝑛2𝑥𝑓(𝑥) + 𝑦) = 𝑓(𝑦) + 𝑛2𝑥2 = 𝑓(𝑦) + (𝑛𝑥)2 = 𝑓(𝑛𝑥𝑓(𝑛𝑥) + 𝑦)                    (4) 

After taking 𝑦 = −𝑛𝑥𝑓(𝑛𝑥) in (4), the right-hand side becomes 0, therefore 

𝑛2𝑥𝑓(𝑥) − 𝑛𝑥𝑓(𝑛𝑥) = 0. 

This simplifies into 𝑛𝑓(𝑥) = 𝑓(𝑛𝑥) for 𝑥 ≠ 0, but it also holds for 𝑥 = 0. Therefore, for any rational 

number 𝑥 =
𝑝

𝑞
 we have, 

𝑓(𝑥) = 𝑓 (
𝑝

𝑞
) = 𝑓 (𝑝 ∙

1

𝑞
) = 𝑝 ∙ 𝑓 (

1

𝑝
) = 𝑝 ∙

𝑓 (𝑞 ∙
1
𝑞

)

𝑞
=

𝑝

𝑞
∙ 𝑓(1) = 𝑥𝑓(1) 

So, we have 𝑓(𝑥) = 𝑘𝑥, for some rational number 𝑘. Let’s put this answer in (1) and we get 

𝑘(𝑥𝑘𝑥 + 𝑦) = 𝑘𝑦 + 𝑥2, thus 𝑘2 = 1. Therefore 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = −𝑥 are solutions. 

 

 

 

 

Problem 3.   Let 𝐴𝐵𝐶 be a triangle with an obtuse angle at 𝐴. Let 𝐸 and 𝐹 be the intersections of the 

external bisector of angle 𝐴 with the altitudes of ABC through 𝐵 and 𝐶 respectively. Let 𝑀 and 𝑁 be 

the points on the segments 𝐸𝐶 and 𝐹𝐵 respectively such that ∠𝐸𝑀𝐴 = ∠𝐵𝐶𝐴 and ∠𝐴𝑁𝐹 = ∠𝐴𝐵𝐶. 

Prove that the points 𝐸, 𝐹, 𝑁, 𝑀  lie on a circle. 

(Ukraine, Anton Trygub) 



Solution 1. 

     The first solution is based on the main Lemma. We present this Lemma with two different proofs. 

     Lemma: Let 𝐴𝐵𝐶 be an acute triangle with 𝐴𝐵 = 𝐵𝐶. Let 𝑃 be any point on 𝐴𝐶. Line passing through 

𝑃 perpendicular to 𝐴𝐵, intersects ray 𝐵𝐶 in point 𝑇. If the line 𝐴𝑇 intersects the circumscribed circle 

of the triangle 𝐴𝐵𝐶 the second time at point 𝐾, then ∠𝐴𝐾𝑃 = ∠𝐴𝐵𝑃. 

 

     Proof 1: 

     Let 𝐻 be the orthocenter of the triangle 𝐴𝐵𝑃. Then 

∠𝐵𝐻𝑃 =  1800 − ∠𝐵𝐴𝐶 =  1800 − ∠𝐵𝐶𝑃. 

So 𝐵𝐻𝑃𝐶 is cyclic. Then we get 

𝑇𝐾 ∙ 𝑇𝐴 = 𝑇𝐶 ∙ 𝑇𝐵 = 𝑇𝑃 ∙ 𝑇𝐻. 

So, 𝐴𝐻𝑃𝐾 is also cyclic. But then 

∠𝐴𝐾𝑃 = 1800 − ∠𝐴𝐻𝑃 = ∠𝐴𝐵𝑃. 

 

     Proof 2: 

     Consider the symmetric points 𝐵′ and 𝐶′ of 𝐵 and 𝐶, 

respectively, with respect to the line 𝑃𝑇. It is clear that 

TC′ ∙ 𝑇𝐵′ = 𝑇𝐶 ∙ 𝑇𝐵 = 𝑇𝐾 ∙ 𝑇𝐴. 

So 𝐵′𝐶′𝐾𝐴 is cyclic. Also, because of the symmetry we have 

∠𝑃𝐶′𝐵′ = ∠𝑃𝐶𝐵 = ∠𝑃𝐴𝐵. 

So 𝐵′𝐶′𝑃𝐴 is also cyclic. Therefore, the points 𝐵′ , 𝐶′ , 𝐾, 𝑃 and 𝐴 

all lie on the common circle. Because of this fact and because of 

the symmetry again we have 

∠𝑃𝐾𝐴 = ∠𝑃𝐵′𝐴 = ∠𝑃𝐵𝐴. 

So, lemma is proved and now return to the problem. 

     Let 𝐻 be intersection point of the altitudes at 𝐵 and 𝐶. Denote by 𝑀′ and 𝑁′ the intersection points 

of the circumcircle of the triangle 𝐻𝐸𝐹 with the segments 𝐸𝐶 and 𝐹𝐵, respectively. We are going to 

show that 𝑀 = 𝑀′ and 𝑁 = 𝑁′ and it will prove the points 𝐸, 𝐹, 𝑁, 𝑀  lie on a common circle. 

      Of course, 𝐴 is an orthocenter of the triangle 𝐵𝐶𝐻. 

Therefore ∠𝐵𝐻𝐴 = ∠𝐵𝐶𝐴, ∠𝐶𝐻𝐴 = ∠𝐶𝐵𝐴 and 

∠𝐻𝐵𝐴 = ∠𝐻𝐶𝐴. Thus 

∠𝐻𝐸𝐹 = ∠𝐻𝐵𝐴+ ∠𝐸𝐴𝐵 = ∠𝐻𝐶𝐴 + ∠𝐹𝐴𝐶 = ∠𝐻𝐹𝐸. 

So, the triangle 𝐻𝐸𝐹 is isosceles, 𝐻𝐸 = 𝐻𝐹. 

     By using lemma, we get 

∠𝐴𝑀′𝐸 = ∠𝐴𝐻𝐸 = ∠𝐴𝐶𝐵, 

and 

∠𝐴𝑁′𝐹 = ∠𝐴𝐻𝐹 = ∠𝐴𝐵𝐶. 

Therefore 𝑀 = 𝑀′ and 𝑁 = 𝑁′ and we are done. 



Solution 2. 

     Let 𝑋, 𝑌 be projections of 𝐵 on 𝐴𝐶, and 𝐶 on 𝐴𝐵, respectively. Let 𝜔 be circumcircle of 𝐵𝑋𝑌𝐶. Let 𝑍 

be intersection of 𝐸𝐶 and 𝜔 and 𝐷 be projection of 𝐸 on 𝐵𝐴. 
∠𝑀𝐴𝐶 = ∠𝐴𝑀𝐸 − ∠𝑀𝐶𝐴 = ∠𝑋𝐶𝐵 − ∠𝑋𝐶𝐸 = ∠𝑍𝐶𝐵 = ∠𝑍𝑋𝐵 

Since 𝐵𝑋𝑌𝐶 is cyclic ∠𝐴𝐶𝑌 = ∠𝑋𝐵𝐴, and since 
𝐷𝐸𝑋𝐴 is cyclic 

∠𝐸𝑋𝐷 = ∠𝐸𝐴𝐷 = ∠𝐹𝐴𝐶. 
Therefore, we get that the quadrangles 𝐵𝑍𝑋𝐷 and 
𝐶𝑀𝐴𝐹 are similar. Hence ∠𝐹𝑀𝐶 = ∠𝐷𝑍𝐵. Since 
𝑍𝐸𝐷𝐵 is cyclic, 

∠𝐷𝑍𝐵 = ∠𝐷𝐸𝐵 = ∠𝑋𝐴𝐵. 
Thus ∠𝐹𝑀𝐶 = ∠𝑋𝐴𝐵. Similarly, ∠𝐸𝑁𝐵 = ∠𝑌𝐴𝐶. 
We get that ∠𝐹𝑀𝐶 = ∠𝐸𝑁𝐵 and it implies that 

the points 𝐸, 𝐹, 𝑁, 𝑀 lie on a circle. 
 

 

 

 

Problem 4. Let 𝐴𝐵𝐶 be a triangle with incentre 𝐼and let 𝐷 be an arbitrary point on the side 𝐵𝐶. Let the 

line through 𝐷 perpendicular to 𝐵𝐼 intersect 𝐶𝐼 at 𝐸. Let the line through 𝐷 perpendicular to 𝐶𝐼 

intersect 𝐵𝐼 at 𝐹. Prove that the reflection of 𝐴  in  the line 𝐸𝐹 lies on the line  𝐵𝐶. 

(Australia, Sampson Wong) 

Solution 1. 

     Let us consider the case when 𝐼 lies inside of triangle 𝐸𝐹𝐷. For the 

other cases the proof is almost the same only with the slight difference. 

     We are going to prove that the intersection point of the circumcircles 

of 𝐴𝐸𝐶 and 𝐴𝐹𝐵 (denote it by 𝑇) lies on the line 𝐵𝐶 and this point is the 

symmetric point of 𝐴 with respect to 𝐸𝐹. First of all we prove that 𝐴𝐸𝐼𝐹 

is cyclic, which implies that 𝑇 lies on the line 𝐵𝐶, because 

∠𝐴𝑇𝐵 + ∠𝐴𝑇𝐶 = ∠𝐴𝐹𝐵 + ∠𝐴𝐸𝐶 = ∠𝐴𝐹𝐼 + ∠𝐴𝐸𝐼 = 1800. 

     Denote by 𝑁 an intersection point of the lines 𝐷𝐹 and 𝐴𝐶. Of course 𝑁 

is the symmetric point with respect to 𝐶𝐼. Thus, ∠𝐼𝑁𝐴 = ∠𝐼𝐷𝐵. Also,  

∠𝐼𝐹𝐷 = ∠𝑁𝐷𝐶 − ∠𝐼𝐵𝐶 = 900 − ∠𝐼𝐶𝐵 − ∠𝐼𝐵𝐶 = ∠𝐼𝐴𝑁. 

So, we get that 𝐴, 𝐼, 𝑁 and 𝐹 lie on a common circle. Therefore, we have 

∠𝐴𝐹𝐼 = ∠𝐼𝑁𝐴 = ∠𝐼𝐷𝐵. Analogously, ∠𝐴𝐸𝐼 = ∠𝐼𝐷𝐶 and we have 

∠𝐴𝐹𝐼 + ∠𝐴𝐸𝐼 = ∠𝐼𝐷𝐵 + ∠𝐼𝐷𝐶 

So ∠𝐴𝐹𝐼 + ∠𝐴𝐸𝐼 = 1800, thus 𝐴𝐸𝐼𝐹 is cyclic and 𝑇 lies on the line 𝐵𝐶. 



     Because 𝐸𝐶 bisects the angle 𝐴𝐶𝐵 and 𝐴𝐸𝑇𝐶 is cyclic we get 𝐸𝐴 = 𝐸𝑇. 

Because of the similar reasons we have 𝐹𝐴 = 𝐹𝑇. Therefore 𝑇 is the 

symmetric point of 𝐴 with respect to the line 𝐸𝐹 and it lies on the line 

𝐵𝐶. 

 

 

Solution 2. 

     Like to the first solution, consider the case when 𝐼 lies inside of triangle 𝐸𝐹𝐷. we need to prove that 

𝐴𝐸𝐼𝐹 is cyclic. The finish of the proof is the same. 

     first note that △ 𝐹𝐷𝐵~ △ 𝐴𝐼𝐵, because ∠𝐹𝐵𝐷 = ∠𝐴𝐵𝐼, and 

∠𝐵𝐹𝐷 = ∠𝐹𝐷𝐶 − ∠𝐼𝐵𝐶 = 900 − ∠𝐼𝐶𝐷 − ∠𝐼𝐵𝐶 = ∠𝐼𝐴𝐵. 

Because of the similarity we have 
𝐴𝐵

𝐴𝐹
=

𝐵𝐼

𝐵𝐷
. This equality of the length ratios 

with ∠𝐼𝐵𝐷 = ∠𝐴𝐵𝐹 implies that △ 𝐴𝐵𝐹~ △ 𝐼𝐵𝐷. Therefore, we have 

∠𝐼𝐷𝐵 = ∠𝐴𝐹𝐵. Analogously, we can get ∠𝐼𝐷𝐶 = ∠𝐴𝐸𝐶, thus 

∠𝐴𝐹𝐼 + ∠𝐴𝐸𝐼 = ∠𝐼𝐷𝐵 + ∠𝐼𝐷𝐶 = 1800. 

So, 𝐴𝐸𝐼𝐹 is cyclic and we are done. 

 

 

 

 

Problems 5. A plane has a special point 𝑂 called the origin. Let 𝑃 be a set of  2021 points in the plane, 

such that 

(i) no three points in 𝑃 lie on a line and 

(ii) no two points in 𝑃 lie on a line through the origin.  

A triangle with vertices in 𝑃 is fat, if 𝑂 is strictly inside the triangle. Find the maximum number of fat 

triangles. 

(Austria, Veronika Schreitter) 

 

Answer: 2021 ∙ 505 ∙ 337 

Solution 

     We will count minimal number of triangles that are not fat. Let 𝐹 set of fat triangles, and S set of 

triangles that are not fat. If triangle 𝑋𝑌𝑍 ∈ 𝑆, we call 𝑋 and 𝑍 good vertices if 𝑂𝑌 is located between 
𝑂𝑋 and 𝑂𝑍. For 𝐴 ∈ 𝑃 let 𝑆𝐴 ⊆ 𝑆 be set of triangles in 𝑆 for which 𝐴 is one of the good vertex. 
     It is easy to see that 

2|𝑆| = ∑ |𝑆𝐴|

𝐴∈𝑃

                                                                            (1) 



     For 𝐴 ∈ 𝑃, let 𝑅𝐴 ⊂ 𝑃 and 𝐿𝐴 ⊂ 𝑃 be parts of 𝑃\{𝐴} divided by 𝐴𝑂. Suppose for 𝐴𝑋𝑌 ∈ 𝑆 vertex 𝐴 is 
good, then clearly 𝑋, 𝑌 ∈ 𝑅𝐴 or 𝑋, 𝑌 ∈ 𝐿𝐴. On the other hand, if 𝑋, 𝑌 ∈ 𝑅𝐴 or 𝑋, 𝑌 ∈ 𝐿𝐴 then clearly 

𝐴𝑋𝑌 ∈ 𝑆 and 𝐴 is its good vertex. Therefore, 

|𝑆𝐴| = (
|𝑅𝐴|

2
) + (

|𝐿𝐴|

2
)                                                                    (2) 

It is easy to show following identity: 

𝑥(𝑥 − 1)

2
+

𝑦(𝑦 − 1)

2
− 2 ∙

𝑥 + 𝑦
2

(
𝑥 + 𝑦

2
− 1)

2
=

(𝑥 − 𝑦) 2

4
                                     (3) 

By using (2) and (3) we get 

|𝑆𝐴| ≥ 2 ∙ (

|𝑅𝐴| + |𝐿𝐴|

2
2

) = 2 ∙ (
1010

2
) = 1010 ∙ 1009                                        (4) 

and the equality holds when |𝑅𝐴| = |𝐿𝐴| = 1010. Hence 

|𝑆| =
∑ |𝑆𝐴|𝐴∈𝑃

2
≥

2021 ∙ 1010 ∙ 1009

2
= 2021 ∙ 505 ∙ 1009.                                   (5) 

Therefore, 

|𝐹| = (
2021

3
) − |𝑆| ≤ 2021 ∙ 1010 ∙ 673 − 2021 ∙ 505 ∙ 1009 = 2021 ∙ 505 ∙ 337.            (6) 

     For configuration of points on regular 2021-gon which is centered at 𝑂, inequalities in (4), (5), (6) 
become equalities. Hence 2021 ∙ 505 ∙ 337 is indeed the answer. 

 

 

 

 

Problems 6. Does there exist a nonnegative integer 𝑎 for which the equation 

 

⌊
𝑚

1
⌋ + ⌊

𝑚

2
⌋ + ⌊

𝑚

3
⌋+ ⋯ + ⌊

𝑚

𝑚
⌋ = 𝑛2 + 𝑎 

 
has more than one million different solutions (𝑚, 𝑛)  where  𝑚  and 𝑛  are   positive integers? 

(The expression ⌊𝑥⌋ denotes the integer part (or floor) of the real number 𝑥. Thus ⌊√2⌋ = 1, ⌊𝜋⌋ = ⌊
22

7
⌋ =

3, ⌊42⌋ = 42 𝑎𝑛𝑑 ⌊0⌋ = 0) 

(Austria, Veronika Schreitter) 

 

Answer:  Yes. 

 

Solution. 

     Denote the equation from the statement by (1). The left hand side of (1) depends only on 𝑚, and 

will throughout be denoted by 𝐿(𝑚). Fix an integer 𝑞 > 107 and note that for 𝑚 = 𝑞3 



𝐿(𝑞3) = ∑ [
𝑞3

𝑘
]

𝑞3

𝑘=1

≤ ∑
𝑞3

𝑘

𝑞3

𝑘=1

≤ 𝑞3 ∙ ∑
1

𝑘

𝑞3

𝑘=1

≤ 𝑞3 ∙ 𝑞 = 𝑞4.                                         (2) 

Indeed, the first inequality results from [𝑥] ≤ 𝑥. The second inequality can be seen (for instance) as 

follows. We divide the terms in the sum ∑
1

𝑘

𝑞3

𝑘=1  into several groups: For 𝑗 ≥ 0, the 𝑗-th group contains 

the 2𝑗 consecutive terms 
1

2𝑗
, … ,

1

2𝑗+1−1
. Since every term in the 𝑗-th group is bounded by 

1

2𝑗
 , the overall 

contribution of the 𝑗-th group to the sum is at most 1. Since the first 𝑞 groups together would contain 

2𝑞 − 1 > 𝑞3 terms, the number of groups does not exceed 𝑞, and hence the value of the sum under 

consideration is indeed bounded by 𝑞. 

     Call an integer 𝑚 special, if it satisfies 1 ≤ 𝐿(𝑚) ≤ 𝑞4. Denote by 𝑔(𝑚) ≥ 1 the largest integer 

whose square is bounded by 𝐿(𝑚); in other words 𝑔2(𝑚) ≤ 𝐿(𝑚) < (𝑔(𝑚) +  1)2. Note that 𝑔(𝑚) ≤

𝑞2 for all special 𝑚, which implies 

0 ≤ 𝐿(𝑚) − 𝑔2(𝑚) < (𝑔(𝑚) + 1)2 − 𝑔2(𝑚) = 2𝑔(𝑚) + 1 ≤ 2𝑞2 + 1.                      (3) 

     Finally, we do some counting. Inequality (2) and the monotonicity of 𝐿(𝑚) imply that there exist 

at least 𝑞3 special integers. Because of (3), every special integer 𝑚 has 0 ≤ 𝐿(𝑚) − 𝑔2(𝑚) ≤ 2𝑞2 + 1. 

By averaging, at least 
𝑞3

2𝑞2+2
> 106  special integers must yield the same value 𝐿(𝑚) − 𝑔2(𝑚). This 

frequently occurring value is our choice for 𝛼, which yields more than 106 solutions (𝑚, 𝑔(𝑚)) to 

equation (1). Hence, the answer to the problem is YES. 

 

 


