Problem 4. Let $A B C$ be a triangle with incenter I and let D be an arbitrary point on the side $B C$. Let the line through D perpendicular to $B I$ intersect $C I$ at E. Let the line through D perpendicular to $C I$ intersect $B I$ at F. Prove that the reflection of A across the line $E F$ lies on the line $B C$.

Problem 5. A plane has a special point O called the origin. Let P be a set of 2021 points in the plane such that
(i) no three points in P lie on a line and
(ii) no two points in P lie on a line through the origin.

A triangle with vertices in P is fat if O is strictly inside the triangle. Find the maximum number of fat triangles.

Problem 6. Does there exist a nonnegative integer a for which the equation

$$
\left\lfloor\frac{m}{1}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{3}\right\rfloor+\cdots+\left\lfloor\frac{m}{m}\right\rfloor=n^{2}+a
$$

has more than one million different solutions (m, n) where m and n are positive integers?
The expression $\lfloor x\rfloor$ denotes the integer part (or floor) of the real number x. Thus $\lfloor\sqrt{2}\rfloor=1,\lfloor\pi\rfloor=$ $\lfloor 22 / 7\rfloor=3,\lfloor 42\rfloor=42$ and $\lfloor 0\rfloor=0$.

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Tuesday 13 April, 12:00 UTC (05:00 Pacific Daylight Time, 13:00 British Summer Time, 22:00 Australian Eastern Standard Time).

