

Language: English

Day: 2

Monday, April 12, 2021

Problem 4. Let ABC be a triangle with incentre I and let D be an arbitrary point on the side BC. Let the line through D perpendicular to BI intersect CI at E. Let the line through D perpendicular to CI intersect BI at F. Prove that the reflection of A in the line EF lies on the line BC.

Problem 5. A plane has a special point O called the origin. Let P be a set of 2021 points in the plane such that

- (i) no three points in P lie on a line and
- (ii) no two points in P lie on a line through the origin.

A triangle with vertices in P is fat if O is strictly inside the triangle. Find the maximum number of fat triangles.

Problem 6. Does there exist a nonnegative integer a for which the equation

$$\left\lfloor \frac{m}{1} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor + \left\lfloor \frac{m}{3} \right\rfloor + \dots + \left\lfloor \frac{m}{m} \right\rfloor = n^2 + a$$

has more than one million different solutions (m, n) where m and n are positive integers?

The expression $\lfloor x \rfloor$ denotes the integer part (or floor) of the real number x. Thus $\lfloor \sqrt{2} \rfloor = 1$, $\lfloor \pi \rfloor = \lfloor 22/7 \rfloor = 3$, $\lfloor 42 \rfloor = 42$ and $\lfloor 0 \rfloor = 0$.

Language: English

Time: 4 hours and 30 minutes Each problem is worth 7 points

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Tuesday 13 April, 12:00 UTC (05:00 Pacific Daylight Time, 13:00 British Summer Time, 22:00 Australian Eastern Standard Time).