Problem 1. The number 2021 is fantabulous. For any positive integer m, if any element of the set $\{m, 2 m+1,3 m\}$ is fantabulous, then all the elements are fantabulous. Does it follow that the number 2021^{2021} is fantabulous?

Problem 2. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that the equation

$$
f(x f(x)+y)=f(y)+x^{2}
$$

holds for all rational numbers x and y.
Here, \mathbb{Q} denotes the set of rational numbers.
Problem 3. Let $A B C$ be a triangle with an obtuse angle at A. Let E and F be the intersections of the external bisector of angle A with the altitudes of $A B C$ through B and C respectively. Let M and N be the points on the segments $E C$ and $F B$ respectively such that $\angle E M A=\angle B C A$ and $\angle A N F=\angle A B C$. Prove that the points E, F, N, M lie on a circle.

To make this a fair and enjoyable contest for everyone, please do not mention or refer to the problems on the internet or on social media until Tuesday 13 April, 12:00 UTC (05:00 Pacific Daylight Time, 13:00 British Summer Time, 22:00 Australian Eastern Standard Time).

