Problem 1. The number 2021 is fantabulous. For any positive integer m, if any element of the set $\{m, 2m + 1, 3m\}$ is fantabulous, then all the elements are fantabulous. Does it follow that the number 2021 is fantabulous?

Problem 2. Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that the equation

$$f(xf(x) + y) = f(y) + x^2$$

holds for all rational numbers x and y.

Here, \mathbb{Q} denotes the set of rational numbers.

Problem 3. Let ABC be a triangle with an obtuse angle at A. Let E and F be the intersections of the external bisector of angle A with the altitudes of ABC through B and C respectively. Let M and N be the points on the segments EC and FB respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points E, F, N, M lie on a circle.