Day: 1

Thursday, April 12, 2012

Problem 1. Let $A B C$ be a triangle with circumcentre O. The points D, E and F lie in the interiors of the sides $B C, C A$ and $A B$ respectively, such that $D E$ is perpendicular to $C O$ and $D F$ is perpendicular to $B O$. (By interior we mean, for example, that the point D lies on the line $B C$ and D is between B and C on that line.)

Let K be the circumcentre of triangle $A F E$. Prove that the lines $D K$ and $B C$ are perpendicular.

Problem 2. Let n be a positive integer. Find the greatest possible integer m, in terms of n, with the following property: a table with m rows and n columns can be filled with real numbers in such a manner that for any two different rows $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ the following holds:

$$
\max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|, \ldots,\left|a_{n}-b_{n}\right|\right)=1
$$

Problem 3. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(y f(x+y)+f(x))=4 x+2 y f(x+y)
$$

for all $x, y \in \mathbb{R}$.

Problem 4. A set A of integers is called sum-full if $A \subseteq A+A$, i.e. each element $a \in A$ is the sum of some pair of (not necessarily different) elements $b, c \in A$. A set A of integers is said to be zero-sum-free if 0 is the only integer that cannot be expressed as the sum of the elements of a finite nonempty subset of A.

Does there exist a sum-full zero-sum-free set of integers?

