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EGMO 2023 – Problems and solutions

Problems
Problem 1. There are n ⩾ 3 positive real numbers a1, a2, . . . , an. For each 1 ⩽ i ⩽ n we
let bi = ai−1+ai+1

ai
(here we define a0 to be an and an+1 to be a1). Assume that for all i

and j in the range 1 to n, we have ai ⩽ aj if and only if bi ⩽ bj.

Prove that a1 = a2 = · · · = an.

Problem 2. We are given an acute triangle ABC. Let D be the point on its circumcircle
such that AD is a diameter. Suppose that points K and L lie on segments AB and AC,
respectively, and that DK and DL are tangent to circle AKL.

Show that line KL passes through the orthocentre of ABC.

The altitudes of a triangle meet at its orthocentre.

Problem 3. Let k be a positive integer. Lexi has a dictionary D consisting of some
k-letter strings containing only the letters A and B. Lexi would like to write either the
letter A or the letter B in each cell of a k × k grid so that each column contains a string
from D when read from top-to-bottom and each row contains a string from D when read
from left-to-right.

What is the smallest integer m such that if D contains at least m different strings, then
Lexi can fill her grid in this manner, no matter what strings are in D?

Problem 4. Turbo the snail sits on a point on a circle with circumference 1. Given an
infinite sequence of positive real numbers c1, c2, c3, . . ., Turbo successively crawls distances
c1, c2, c3, . . . around the circle, each time choosing to crawl either clockwise or counter-
clockwise.
For example, if the sequence c1, c2, c3, . . . is 0.4, 0.6, 0.3, . . ., then Turbo may start crawling
as follows:

0.4
0.6

0.3

Determine the largest constant C > 0 with the following property: for every sequence of
positive real numbers c1, c2, c3, . . . with ci < C for all i, Turbo can (after studying the
sequence) ensure that there is some point on the circle that it will never visit or crawl
across.

Problem 5. We are given a positive integer s ⩾ 2. For each positive integer k, we define
its twist k′ as follows: write k as as + b, where a, b are non-negative integers and b < s,
then k′ = bs+a. For the positive integer n, consider the infinite sequence d1, d2, . . . where
d1 = n and di+1 is the twist of di for each positive integer i.
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Prove that this sequence contains 1 if and only if the remainder when n is divided by
s2 − 1 is either 1 or s.

Problem 6. Let ABC be a triangle with circumcircle Ω. Let Sb and Sc respectively
denote the midpoints of the arcs AC and AB that do not contain the third vertex. Let
Na denote the midpoint of arc BAC (the arc BC containing A). Let I be the incentre of
ABC. Let ωb be the circle that is tangent to AB and internally tangent to Ω at Sb, and
let ωc be the circle that is tangent to AC and internally tangent to Ω at Sc. Show that
the line INa, and the line through the intersections of ωb and ωc, meet on Ω.

The incentre of a triangle is the centre of its incircle, the circle inside the triangle that is
tangent to all three sides.
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Solutions
Problem 1. There are n ⩾ 3 positive real numbers a1, a2, . . . , an. For each 1 ⩽ i ⩽ n we
let bi = ai−1+ai+1

ai
(here we define a0 to be an and an+1 to be a1). Assume that for all i

and j in the range 1 to n, we have ai ⩽ aj if and only if bi ⩽ bj.

Prove that a1 = a2 = · · · = an.

Solution 1. Suppose that not all ai are equal. Consider an index i such that ai is maximal
and ai+1 < ai. Then

bi = ai−1 + ai+1

ai

<
2ai

ai

= 2.

But since ai is maximal, bi is also maximal, so we must have bj < 2 for all j ∈ {1, 2, . . . , n}.

However, consider the product b1b2 . . . bn. We have

b1b2 . . . bn = an + a2

a1
· a1 + a3

a2
· . . . · an−1 + a1

an

⩾ 2n

√
ana2

√
a1a3 . . .

√
an−1a1

a1a2 . . . an

= 2n,

where we used the inequality x + y ⩾ 2√
xy for x = ai−1, y = ai+1 for all i ∈ {1, 2, . . . , n}

in the second row.

Since the product of all bi is at least 2n, at least one of them must be greater than 2,
which is a contradiction with the previous conclusion.

Thus, all ai must be equal.

Solution 2. This is a version of Solution 1 without use of proof by contradiction.

Taking ai such that it is maximal among a1, . . . , an, we obtain bi ⩽ 2. Thus bi ⩽ 2 for all
j ∈ {1, 2, . . . , n}.

The second part of Solution 1 then gives 2n ⩾ b1 · · · bn ⩾ 2n, which together with bi ⩽ 2
for all j ∈ {1, 2, . . . , n} implies that bj = 2 for all j ∈ {1, 2, . . . , n}. Since we have b1 =
b2 = · · · = bn, the condition that ai ⩽ aj ⇐⇒ bi ⩽ bj gives that a1 = a2 = · · · = an.

Solution 3. We first show that bj ⩽ 2 for all j as in Solution 2. Then

2n ⩾b1 + · · · + bn = an

a1
+ a2

a1
+ a1

a2
+ a3

a2
+ · · · + an−1

an

+ a1

an

⩾2n n

√
an

a1
· a2

a1
· a1

a2
· a3

a2
· · · an−1

an

· a1

an

= 2n · 1 = 2n,

where we used the AM-GM inequality.

It follows that all bj’s are equal which as in Solution 2 gives a1 = a2 = · · · = an.
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Solution 4. By assumption aibi = ai−1 + ai+1 for i = {1, 2, . . . , n}, hence,
n∑

i=1
aibi = 2

n∑
i=1

ai.

Since ai ⩽ aj if and only if bi ⩽ bj, the Chebyshev’s inequality implies(
n∑

i=1
ai

)
·
(

n∑
i=1

bi

)
⩽ n ·

n∑
i=1

aibi = 2n ·
n∑

i=1
ai

and so ∑n
i=1 bi ⩽ 2n. On the other hand, we have

n∑
i=1

bi =
n∑

i=1

ai−1

ai

+
n∑

i=1

ai+1

ai

=
n∑

i=1

ai−1

ai

+
n∑

i=1

ai

ai−1
=

n∑
i=1

(
ai−1

ai

+ ai

ai−1

)
,

so we can use the AM-GM inequality to estimate
n∑

i=1
bi ⩾

n∑
i=1

2
√

ai−1

ai

· ai

ai−1
= 2n.

We conclude that we must have equalities in all the above, which implies ai−1
ai

= ai

ai−1
and

consequently ai = ai−1 for all positive integers i. Hence, all a’s are equal.

Solution 5. As in Solution 4 we show that ∑n
i=1 bi ⩽ 2n and as in Solution 1 we show

that ∏n
i=1 bi ⩾ 2n. We now use the AM-GM inequality and the first inequality to get

n∏
i=1

bi ⩽

(
1
n

n∑
i=1

bi

)n

⩽
( 1

n
· 2n

)n

= 2n.

This implies that we must have equalities in all the above. In particular, we have equality
in the AM-GM inequality, so all b’s are equal and as in Solution 2 then all a’s are equal.

Solution 6. Let ai to be minimal and aj maximal among all a’s. Then

bj = aj−1 + aj+1

aj

⩽
2aj

aj

= 2 = 2ai

ai

⩽
ai−1 + ai+1

ai

= bi

and by assumption bi ⩽ bj. Hence, we have equalities in the above so bj = 2 so aj−1 +
aj+1 = 2aj and therefore aj−1 = aj = aj+1. We have thus shown that the two neighbors
of a maximal a are also maximal. By an inductive argument all a’s are maximal, hence
equal.

Solution 7. Choose an arbitrary index i and assume without loss of generality that
ai ⩽ ai+1. (If the opposite inequality holds, reverse all the inequalities below.) By
induction we will show that for each k ∈ N0 the following two inequalities hold

ai+1+k ⩾ ai−k (1)

ai+1+kai+1−k ⩾ ai−kai+k (2)
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(where all indices are cyclic modulo n). Both inequalities trivially hold for k = 0.

Assume now that both inequalities hold for some k ⩾ 0. The inequality ai+1+k ⩾ ai−k

implies bi+1+k ⩾ bi−k, so

ai+k + ai+2+k

ai+1+k

⩾
ai−1−k + ai+1−k

ai−k

.

We may rearrange this inequality by making ai+2+k the subject so

ai+2+k ⩾
ai+1+kai−1−k

ai−k

+ ai+1−kai+1+k − ai+kai−k

ai−k

⩾
ai+1+kai−1−k

ai−k

,

where the last inequality holds by (2). It follows that

a(i+1)+(k+1)a(i+1)−(k+1) ⩾ ai+(k+1)ai−(k+1),

i.e. the inequality (2) holds also for k + 1. Using (1) we now get

a(i+1)+(k+1) ⩾
ai+k+1

ai−k

ai−(k+1) ⩾ ai−(k+1),

i.e. (1) holds for k + 1.

Now we use the inequality (1) for k = n − 1. We get ai ⩾ ai+1, and since at the beginning
we assumed ai ⩽ ai+1, we get that any two consecutive a’s are equal, so all of them are
equal.

Solution 8. We first prove the following claim by induction:

Claim 1: If akak+2 < a2
k+1 and ak < ak+1, then ajaj+2 < a2

j+1 and aj < aj+1 for all j.

We assume that aiai+2 < a2
i+1 and ai < ai+1, and then show that ai−1ai+1 < a2

i and
ai−1 < ai.

Since ai ≤ ai+1 we have that bi ≤ bi+1. By plugging in the definition of bi and bi+1 we
have that

ai+1ai−1 + a2
i+1 ≤ a2

i + ai+2ai. (3)

Using aiai+2 < a2
i+1 we get that

ai+1ai−1 < a2
i . (4)

Since ai < ai+1 we have that ai−1 < ai, which concludes the induction step and hence
proves the claim.

We cannot have that aj < aj+1 for all indices j. Similar as in the above claim, one can
prove that if akak+2 < a2

k+1 and ak+2 < ak+1, then aj+1 < aj for all j, which also cannot
be the case. Thus we have that akak+2 ≥ a2

k+1 for all indices k.

Next observe (e.g. by taking the product over all indices) that this implies akak+2 = a2
k+1

for all indices k, which is equivalent to bk = bk+1 for all k and hence ak+1 = ak for all
k.
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Solution 9. Define ci := ai

ai+1
, then bi = ci−1 + 1/ci. Assume that not all ci are equal to

1. Since, ∏n
i=1 ci = 1 there exists a k such that ck ⩾ 1. From the condition given in the

problem statement for (i, j) = (k, k + 1) we have

ck ⩾ 1 ⇐⇒ ck−1 + 1
ck

⩾ ck + 1
ck+1

⇐⇒ ck−1ckck+1 + ck+1 ⩾ c2
kck+1 + ck. (5)

Now since ck+1 ⩽ c2
kck+1, it follows that

ci−1cici+1 ⩾ ci =⇒ (ci−1 ⩾ 1 or ci+1 ⩾ 1) . (6)

So there exist a set of at least 2 consecutive integers, such that the corresponding ci are
greater or equal to one. By the innitial assumption there must exist an index ℓ, such that
cℓ−1, cℓ ⩾ 1 and cℓ+1 < 1. We distinguish two cases:

Case 1: cℓ > cℓ−1 ⩾ 1
From cℓ−1cℓcℓ+1 < c2

ℓcℓ+1 and the inequality (5), we get that cℓ+1 > cℓ ⩾ 1, which is a
contradiction to our choice of ℓ.

Case 2: cℓ−1 ⩾ cℓ ⩾ 1
Once again looking at the inequality (5) we can find that

cℓ−2cℓ−1cℓ ⩾ c2
ℓ−1cℓ =⇒ cℓ−2 ⩾ cℓ−1. (7)

Note that we only needed cℓ−1 ⩾ cℓ ⩾ 1 to show cℓ−2 ⩾ cℓ−1 ⩾ 1. So using induction we
can easily show cℓ−s−1 ⩾ cℓ−s for all s.
So

c1 ⩽ c2 ⩽ · · · ⩽ cn ⩽ c1 (8)

a contradiction to our innitial assumption.

So our innitial assumtion must have been wrong, which implies that all the ai must
have been equal from the start.

6



EGMO 2023, Portorož Problems & Solutions

Problem 2. We are given an acute triangle ABC. Let D be the point on its circumcircle
such that AD is a diameter. Suppose that points K and L lie on segments AB and AC,
respectively, and that DK and DL are tangent to circle AKL.

Show that line KL passes through the orthocentre of ABC.

The altitudes of a triangle meet at its orthocentre.

A

B C

D

M

K

L

Figure 1: Diagram to solution 1

Solution 1. Let M be the midpoint of KL. We will prove that M is the orthocentre
of ABC. Since DK and DL are tangent to the same circle, |DK| = |DL| and hence
DM ⊥ KL. The theorem of Thales in circle ABC also gives DB ⊥ BA and DC ⊥ CA.
The right angles then give that quadrilaterals BDMK and DMLC are cyclic.

If ∠BAC = α, then clearly ∠DKM = ∠MLD = α by angle in the alternate segment of
circle AKL, and so ∠MDK = ∠LDM = π

2 − α, which thanks to cyclic quadrilaterals
gives ∠MBK = ∠LCM = π

2 − α. From this, we have BM ⊥ AC and CM ⊥ AB, and
so M indeed is the orthocentre of ABC.

Solution 2. Preliminaries

Let ABC be a triangle with circumcircle Γ. Let X be a point in the plane. The Simson
line (Wallace-Simson line) is defined via the following theorem. Drop perpendiculars from
X to each of the three side lines of ABC. The feet of these perpendiculars are collinear (on
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the Simson line of X) if and only if X lies of Γ. The Simson line of X in the circumcircle
bisects the line segment XH where H is the orthocentre of triangle ABC. See Figure 2

A

B C

H

F

U

V

W
U ′

V ′

W ′
H ′

Doubled Simson line

Simson line

Figure 2: The Wallace-Simson configuration

When X is on Γ, we can enlarge from X with scale factor 2 (a homothety) to take
the Simson line to the doubled Simson line which passes through the orthocentre H and
contains the reflections of X in each of the three sides of ABC.

Solution of the problem

A

B C

D

H

K

L
O

F

T G

Figure 3: Three circles do the work

Let Γ be the circle ABC, Σ be the circle AKL with centre O, and Ω be the circle on
diameter OD so K and L are on this circle by converse of Thales. Let Ω and Γ meet at
D and F . By Thales in both circles, ∠AFD and ∠OFD are both right angles so AOF is
a line. Let AF meet Σ again at T so AT (containing O) is a diameter of this circle and
by Thales, TL ⊥ AC.

Let G (on Σ) be the reflection of K in AF . Now AT is the internal angle bisector of
∠GAK so, by an upmarket use of angles in the same segment (of Σ), TL is the internal
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angle bisector of ∠GLK. Thus the line GL is the reflection of the line KL in TL, and so
also the reflection of KL in the line AC (internal and external angle bisectors).

Our next project is to show that LGF are collinear. Well ∠FLK = ∠FOK (angles in the
same segment of Ω) and ∠GLK = ∠GAK (angles in the same segment of Σ) = 2∠OAK
(AKG is isosceles with apex A) = ∠TOK (since OAK is isosceles with apex O, and this
is an external angle at O). The point T lies in the interior of the line segment FO so
∠TOK = ∠FOK. Therefore ∠FLK = ∠GLK so LGF is a line.

Now from the second paragraph, F is on the reflection of KL in AC. By symmetry, F
is also on the reflection of KL in AB. Therefore the reflections of F in AB and AC are
both on KL which must therefore be the doubled Wallace-Simson line of F . Therefore
the orthocentre of ABC lies on KL.

Solution 3. Let H be the orthocentre of triangle ABC and Σ the circumcircle of AKL
with centre O. Let Ω be the circle with diameter OD, which contains K and L by Thales,
and let Γ be the circumcircle of ABC containing D. Denote the second intersection of Ω
and Γ by F . Since OD and AD are diameters of Ω and Γ we have ∠OFD = π

2 = ∠AFD,
so the points A, O, F are collinear. Let M and N be the second intersections of CH and
BH with Γ, respectively. It is well-known that M and N are the reflections of H in AB
and AC, respectively (because ∠NCA = ∠NBA = ∠ACM = ∠ABM). By collinearity
of A, O, F and the angles in Γ we have

∠NFO = ∠NFA = ∠NBA = π

2 − ∠BAC = π

2 − ∠KAL.

Since DL is tangent to Σ we obtain

∠NFO = π

2 − ∠KLD = ∠LDO,

where the last equality follows from the fact that OD is bisector of ∠LDK since LD

A

B C

D

H

K

L
O

F

N

M

Figure 4: Diagram to Solution 3
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and KD are tangent to Σ. Furthermore, ∠LDO = ∠LFO since these are angles in Ω.
Hence, ∠NFO = ∠LFO, which implies that points N, L, F are collinear. Similarly points
M, K, F are collinear. Since N and M are reflections of H in AC and AB we have

∠LHN = ∠HNL = ∠BNF = ∠BMF = ∠BMK = ∠KHB.

Hence,
∠LHK = ∠LHN + ∠NHK = ∠KHB + ∠NHK = π

and the points L, H, K are collinear.

Solution 4. As in Solution 3 let M and N be the reflections of the orthocentre in AB
and AC. Let ∠BAC = α. Then ∠NDM = π − ∠MAN = π − 2α.

Let MK and NL intersect at F . See Figure 3.

Claim. ∠NFM = π − 2α, so F lies on the circumcircle.

Proof. Since KD and LD are tangents to circle AKL, we have |DK| = |DL| and
∠DKL = ∠KLD = α, so ∠LDK = π − 2α.

By definition of M , N and D, ∠MND = ∠AND − ∠ANM = π
2 − (π

2 − α) = α and
analogously ∠DMN = α. Hence |DM | = |DN |.

From ∠NDM = ∠LDK = π − 2α if follows that ∠LDN = ∠KDM . Since |DK| = |DL|
and |DM | = |DN |, triangles MDK and NDL are related by a rotation about D through
angle π − 2α, and hence the angle between MK and NL is π − 2α, which proved the
claim.

We now finish as in Solution 3:

∠MHK = ∠KMH = ∠FMC = ∠FAC,

∠LHN = ∠HNL = ∠BNF = ∠BAF.

As ∠BAF + ∠FAC = α, we have ∠LHK = α + ∠NHM = α + π − α = π, so H lies on
KL.

Solution 5. Since AD is a diameter, it is well known that DBHC is a parallelogram
(indeed, both BD and CH are perpendicular to AB, hence parallel, and similarly for
DC ∥ BH). Let B′, C ′ be the reflections of D in lines AKB and ALC, respectively;
since ABD and ACD are right angles, these are also the factor-2 homotheties of B and
C with respect to D, hence H is the midpoint of B′C ′. We will prove that B′KC ′L is
a parallelogram: it will then follow that the midpoint of B′C ′, which is H, is also the
midpoint of KL, and in particular is on the line, as we wanted to show.

We will prove B′KC ′L is a parallelogram by showing that B′K and C ′L are the same
length and direction. Indeed, for lengths we have KB′ = KD = LD = LC ′, where the
first and last equalities arise from the reflections defining B′ and C ′, and the middle one
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is equality of tangents. For directions, let α, β, γ denote the angles of triangle AKL.
Immediate angle chasing in the circle AKL, and the properties of the reflections, yield

∠C ′LC = ∠CLD = ∠AKL = β

∠BKB′ = ∠DKB = ∠KLA = γ

∠LDK = 2α − π

and therefore in directed angles (mod 2π) we have
∠(C ′L, B′K) = ∠C ′LC +∠CLD +∠LDK +∠DKB +∠BKB′ = 2α + 2β + 2γ − π = π

and hence C ′L and B′K are parallel and in opposite directions, i.e. C ′L and KB′ are in
the same direction, as claimed.

Comment. While not necessary for the final solution, the following related observation
motivates how the fact that H is the midpoint of KL (and therefore B′KC ′L is a paral-
lelogram) was first conjectured. We have AB′ = AD = AC ′ by the reflections, i.e. B′AC ′

is an isosceles triangle with H being the midpoint of the base. Thus AH is the median,
altitude and angle bisector in B′AC ′, thus ∠B′AK + ∠KAH = ∠HAL + ∠LAC ′. Since
from the reflections we also have ∠B′AK = ∠KAD and ∠DAL = ∠LAC ′ it follows that
∠HAL = ∠KAD and ∠KAH = ∠DAL. Since D is the symmedian point in AKL, the
angle conjugation implies AH is the median line of KL. Thus, if H is indeed on KL (as
the problem assures us), it can only be the midpoint of KL.

Solution 6. There are a number of “phantom point” arguments which define K ′ and L′

in terms of angles and then deduce that these points are actually K and L.

Note: In these solutions it is necessary to show that K and L are uniquely determined by
the conditions of the problem. One example of doing this is the following:

To prove uniqueness of K and L, let us consider that there exist two other points K ′ and
L′ that satisfy the same properties (K ′ on AB and L′ on AC such that DK ′ and DL′ are
tangent to the circle AK ′L′).
Then, we have that DK = DL and DK ′ = DL′. We also have that ∠KDL = ∠K ′DL′ =
π−2∠A. Hence, we deduce ∠KDK ′ = ∠KDL−∠K ′DL = ∠K ′DL′ −∠K ′DL = ∠LDL′

Thus we have that △KDK ′ ≡ △LDL′, so we deduce ∠DKA = ∠DKK ′ = ∠DLL′ =
π − ∠ALD. This implies that AKDL is concyclic, which is clearly a contradiction since
∠KAL + ∠KDL = π − ∠BAC.

Solution 7. We will use the usual complex number notation, where we will use a capital
letter (like Z) to denote the point associated to a complex number (like z). Consider
△AKL on the unit circle. So, we have a · ā = k · k̄ = l · l̄ = 1 As point D is the
intersection of the tangents to the unit circle at K and L, we have that

d = 2kl

k + l
and d̄ = 2

k + l

Defining B as the foot of the perpendicular from D on the line AK, and C as the foot of
the perpendicular from D on the line AL , we have the formulas:

b = 1
2

(
d + (a − k)d̄ + āk − ak̄

ā − k̄

)
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c = 1
2

(
d + (a − l)d̄ + āl − al̄

ā − l̄

)
Simplyfing these formulas, we get:

b = 1
2

(
d +

(a − k) 2
k+l

+ k
a

− a
k

1
a

− 1
k

)
= 1

2

d +
2(a−k)

k+l
+ k2−a2

ak
k−a
ak



b = 1
2

(
2kl

k + l
− 2ak

k + l
+ (a + k)

)
= k(l − a)

k + l
+ 1

2(k + a)

c = 1
2

(
d +

(a − l) 2
k+l

+ l
a

− a
l

1
a

− 1
l

)
= 1

2

d +
2(a−l)

k+l
+ l2−a2

al
l−a
al


c = 1

2

(
2kl

k + l
− 2al

k + l
+ (a + l)

)
= l(k − a)

k + l
+ 1

2(l + a)

Let O be the the circumcenter of triangle △ABC. As AD is the diameter of this circle,
we have that:

o = a + d

2
Defining H as the orthocentre of the △ABC, we get that:

h = a + b + c − 2 · o = a +
(

k(l − a)
k + l

+ 1
2(k + a)

)
+
(

l(k − a)
k + l

+ 1
2(l + a)

)
− (a + d)

h = a + 2kl

k + l
− a(k + l)

k + l
+ 1

2k + +1
2 l + +a −

(
a + 2kl

k + l

)

h = 1
2(k + l)

Hence, we conclude that H is the midpoint of KL, so H, K, L are collinear.

Solution 8. Let us employ the barycentric coordinates. Set A(1, 0, 0), K(0, 1, 0), L(0, 0, 1).

The tangent at K of (AKL) is a2z + c2x = 0, and the tangent of of L at (AKL) is
a2y + b2x = 0. Their intersection is

D(−a2 : b2 : c2).

Since B ∈ AK, we can let B(1 − t, t, 0). Solving for −→
AB ·

−−→
BD = 0 gives

t = 3b2 + c2 − a2

2(b2 + c2 − a2) =⇒ B =
(

−a2 − b2 + c2

2(b2 + c2 − a2) ,
−a2 + 3b2 + c2

2(b2 + c2 − a2) , 0
)

.

Likewise, C has the coordinate

C =
(

−a2 + b2 − c2

2(b2 + c2 − a2) , 0,
−a2 + b2 + 3c2

2(b2 + c2 − a2)

)
.

12
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The altitude from B for triangle ABC is

−b2
(

x − z − −a2 − b2 + c2

2(b2 + c2 − a2)

)
+ (c2 − a2)

(
y − −a2 + 3b2 + c2

2(b2 + c2 − a2)

)
= 0.

Also the altitude from C for triangle ABC is

−c2
(

x − y − −a2 + b2 − c2

2(b2 + c2 − a2)

)
+ (a2 − b2)

(
z − −a2 + b2 + 3c2

2(b2 + c2 − a2)

)
= 0.

The intersection of these two altitudes, which is the orthocenter of triangle ABC, has the
barycentric coordinate

H = (0, 1/2, 1/2),

which is the midpoint of the segment KL.

13
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Problem 3. Let k be a positive integer. Lexi has a dictionary D consisting of some
k-letter strings containing only the letters A and B. Lexi would like to write either the
letter A or the letter B in each cell of a k × k grid so that each column contains a string
from D when read from top-to-bottom and each row contains a string from D when read
from left-to-right.

What is the smallest integer m such that if D contains at least m different strings, then
Lexi can fill her grid in this manner, no matter what strings are in D?

Solution. We claim the minimum value of m is 2k−1.

Firstly, we provide a set S of size 2k−1 − 1 for which Lexi cannot fill her grid. Consider
the set of all length-k strings containing only As and Bs which end with a B, and remove
the string consisting of k Bs. Clearly there are 2 independent choices for each of the first
k − 1 letters and 1 for the last letter, and since exactly one string is excluded, there must
be exactly 2k−1 − 1 strings in this set.

Suppose Lexi tries to fill her grid. For each row to have a valid string, it must end in a B.
But then the right column would necessarily contain k Bs, and not be in our set. Thus,
Lexi cannot fill her grid with our set, and we must have m ⩾ 2k−1.

Now, consider any set S with at least 2k−1 strings. Clearly, if S contained either the
uniform string with k As or the string with k Bs, then Lexi could fill her grid with all of
the relevant letters and each row and column would contain that string.

Consider the case where S contains neither of those strings. Among all 2k possible length-
k strings with As and Bs, each has a complement which corresponds to the string with
Bs in every position where first string had As and vice-versa. Clearly, the string with all
As is paired with the string with all Bs. We may assume that we do not take the two
uniform strings and thus applying the pigeonhole principle to the remaining set of strings,
we must have two strings which are complementary.

Let this pair of strings be ℓ, ℓ′ ∈ S in some order. Define the set of indices J corresponding
to the As in ℓ and thus the Bs in ℓ′, and all other indices (not in J ) correspond to Bs in
ℓ (and thus As in ℓ′). Then, we claim that Lexi puts an A in the cell in row r, column c
if r, c ∈ J or r, c /∈ J , and a B otherwise, each row and column contains a string in S.

We illustrate this with a simple example: If k = 6 and we have that AAABAB and
BBBABA are both in the dictionary, then Lexi could fill the table as follows:

A A A B A B
A A A B A B
A A A B A B
B B B A B A
A A A B A B
B B B A B A

Suppose we are looking at row i or column i for i ∈ J . Then by construction the string
in this row/column contains As at indices k with k ∈ J and Bs elsewhere, and thus is
precisely ℓ. Suppose instead we are looking at row i or column i for i /∈ J . Then again

14
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by construction the string in this row/column contains As at indices k with k /∈ J and
Bs elsewhere, and thus is precisely ℓ′. So each row and column indeed contains a string
in S.

Thus, for any S with |S| ⩾ 2k−1, Lexi can definitely fill the grid appropriately. Since we
know m ⩾ 2k−1, 2k−1 is the minimum possible value of m as claimed.
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Problem 4. Turbo the snail sits on a point on a circle with circumference 1. Given an
infinite sequence of positive real numbers c1, c2, c3, . . ., Turbo successively crawls distances
c1, c2, c3, . . . around the circle, each time choosing to crawl either clockwise or counter-
clockwise.
For example, if the sequence c1, c2, c3, . . . is 0.4, 0.6, 0.3, . . ., then Turbo may start crawling
as follows:

0.4
0.6

0.3

Determine the largest constant C > 0 with the following property: for every sequence of
positive real numbers c1, c2, c3, . . . with ci < C for all i, Turbo can (after studying the
sequence) ensure that there is some point on the circle that it will never visit or crawl
across.

Solution 1. The largest possible C is C = 1
2 .

For 0 < C ⩽ 1
2 , Turbo can simply choose an arbitrary point P (different from its starting

point) to avoid. When Turbo is at an arbitrary point A different from P , the two arcs
AP have total length 1; therefore, the larger of the two the arcs (or either arc in case A
is diametrically opposite to P ) must have length ⩾ 1

2 . By always choosing this larger arc
(or either arc in case A is diametrically opposite to P ), Turbo will manage to avoid the
point P forever.

For C > 1
2 , we write C = 1

2 + a with a > 0, and we choose the sequence

1
2 ,

1 + a

2 ,
1
2 ,

1 + a

2 ,
1
2 , . . .

In other words, ci = 1
2 if i is odd and ci = 1+a

2 < C when i is even. We claim Turbo must
eventually visit all points on the circle. This is clear when it crawls in the same direction
two times in a row; after all, we have ci + ci+1 > 1 for all i. Therefore, we are left with
the case that Turbo alternates crawling clockwise and crawling counterclockwise. If it,
without loss of generality, starts by going clockwise, then it will always crawl a distance
1
2 clockwise followed by a distance 1+a

2 counterclockwise. The net effect is that it crawls a
distance a

2 counterclockwise. Because a
2 is positive, there exists a positive integer N such

that a
2 · N > 1. After 2N crawls, Turbo will have crawled a distance a

2 counterclockwise
N times, therefore having covered a total distance of a

2 · N > 1, meaning that it must
have crawled over all points on the circle.

Note: Every sequence of the form ci = x if i is odd, and ci = y if i is even, where
0 < x, y < C, such that x + y ⩾ 1, and x ̸= y satisfies the conditions with the same
argument. There might be even more possible examples.
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Solution 2. Alternative solution (to show that C ⩽ 1
2)

We consider the following related problem:

We assume instead that the snail Chet is moving left and right on the real line. Find the
size M of the smallest (closed) interval, that we cannot force Chet out of, using a sequence
of real numbers di with 0 < di < 1 for all i.

Then C = 1/M . Indeed if for every sequence c1, c2, . . . , with ci < C there exists a point
that Turbo can avoid, then the circle can be cut open at the avoided point and mapped
to an interval of size M such that Chet can stay inside this interval for any sequence
of the from c1/C, c2/C, . . . , see Figure 5. However, all sequences d1, d2, . . . with di < 1
can be written in this form. Similarly if for every sequence d1, d2, . . . , there exists an
interval of length smaller or equal M that we cannot force Chet out of, this projects to
a subset of the circle, that we cannot force Turbo out of using any sequence of the form
d1/M, d2/M, . . . . These are again exactly all the sequences with elements in [0, C).

Figure 5: Chet and Turbo equivalence

Claim: M ⩾ 2.

Proof. Suppose not, so M < 2. Say M = 2−2ε for some ε > 0 and let [−1+ε, 1−ε] be a
minimal interval, that Chet cannot be forced out of. Then we can force Chet arbitrarily
close to ±(1 − ε). In partiular, we can force Chet out of [−1 + 4

3ε, 1 − 4
3ε] by minimality

of M . This means that there exists a sequence d1, d2, . . . for which Chet has to leave
[−1 + 4

3ε, 1 − 4
3ε], which means he ends up either in the interval [−1 + ε, −1 + 4

3ε) or in
the interval (1 − 4

3ε, 1 − ε].

Now consider the sequence,

d1, 1 − 7
6ε, 1 − 2

3ε, 1 − 2
3ε, 1 − 7

6ε, d2, 1 − 7
6ε, 1 − 2

3ε, 1 − 2
3ε, 1 − 7

6ε, d3, . . .

obtained by adding the sequence 1 − 7
6ε, 1 − 2

3ε, 1 − 2
3ε, 1 − 7

6ε in between every two
steps. We claim that this sequence forces Chet to leave the larger interval [−1 + ε, 1 − ε].
Indeed no two consecutive elements in the sequence 1 − 7

6ε, 1 − 2
3ε, 1 − 2

3ε, 1 − 7
6ε can

17
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have the same sign, because the sum of any two consecutive terms is larger than 2 − 2ε
and Chet would leave the interval [−1 + ε, 1 − ε]. It follows that the (1 − 7

6ε)’s and the
(1 − 2

3ε)’s cancel out, so the position after dk is the same as before dk+1. Hence, the
positions after each dk remain the same as in the original sequence. Thus, Chet is also
forced to the boundary in the new sequence.

If Chet is outside the interval [−1 + 4
3ε, 1 − 4

3ε], then Chet has to move 1 − 7
6ε towards

0, and ends in [−1
6ε, 1

6ε]. Chet then has to move by 1 − 2
3ε, which means that he has to

leave the interval [−1 + ε, 1 − ε]. Indeed the absolute value of the final position is at least
1 − 5

6ε. This contradicts the assumption, that we cannot force Chet out of [−1 + ε, 1 − ε].
Hence M ⩾ 2 as needed.
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Problem 5. We are given a positive integer s ⩾ 2. For each positive integer k, we define
its twist k′ as follows: write k as as + b, where a, b are non-negative integers and b < s,
then k′ = bs+a. For the positive integer n, consider the infinite sequence d1, d2, . . . where
d1 = n and di+1 is the twist of di for each positive integer i.

Prove that this sequence contains 1 if and only if the remainder when n is divided by
s2 − 1 is either 1 or s.

Solution 1. First, we consider the difference k − k′′. If k = as + b as in the problem
statement, then k′ = bs + a. We write a = ls + m with m, l non-negative numbers and
m ≤ s − 1. This gives k′′ = ms + (b + l) and hence k − k′′ = (a − m)s − l = l(s2 − 1).

We conclude

Fact 1.1. k ≥ k′′ for every every k ≥ 1

Fact 1.2. s2 − 1 divides the difference k − k′′.

Fact 1.2 implies that the sequences d1, d3, d5, . . . and d2, d4, d6, . . . are constant modulo
s2 − 1. Moreover, Fact 1.1 says that the sequences are (weakly) decreasing and hence
eventually constant. In other words, the sequence d1, d2, d3, . . . is 2-periodic modulo s2 −1
(from the start) and is eventually 2-periodic.

Now, assume that some term in the sequence is equal to 1. The next term is equal to
1′ = s and since the sequence is 2-periodic from the start modulo s2 −1, we conclude that
d1 is either equal to 1 or s modulo s2 − 1. This proves the first implication.

To prove the other direction, assume that d1 is congruent to 1 or s modulo s2 − 1. We
need the observation that once one of the sequences d1, d3, d5, . . . or d2, d4, d6, . . . stabilises,
then their value is less than s2. This is implied by the following fact.

Fact 1.3. If k = k′′, then k = k′′ < s2.

Proof. We use the expression for k − k′′ found before. If k = k′′, then l = 0, and so
k′′ = ms + b. Both m and b are reminders after division by s, so they are both ≤ s − 1.
This gives k′′ ≤ (s − 1)s + (s − 1) < s2.

Using Fact 1.2, it follows that the sequence d1, d3, d5, . . . is constant to 1 or s modulo
s2 − 1 and stabilises to 1 or s by Fact 1.3. Since s′ = 1, we conclude that the sequence
contains a 1.

Solution 2. We make a number of initial observations. Let k be a positive integer.

Fact 2.1. If k ≥ s2, then k′ < k.

Proof. Write k = as + b, as in the problem statement. If k ≥ s2, then a ≥ s because
b < s. So, k′ = bs + a ≤ (s − 1)s + a ≤ as ≤ as + b = k. Moreover, we cannot have
equality since that would imply s − 1 = b = 0.

Fact 2.2. If k ≤ s2 − 1, then k′ ≤ s2 − 1 and k′′ = k.
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Proof. Write k = as + b, as in the problem statement. If k < s2, then it must hold
1 ≤ a, b < s, hence k′ = bs + a < s2 and k′′ = (bs + a)′ = as + b = k.

Fact 2.3. We have k′ ≡ sk (mod s2 − 1) (or equivalently k ≡ sk′ (mod s2 − 1)).

Proof. We write k = as + b, as in the problem statement. Now,

sk − k′ = s(as + b) − (bs + a) = a(s2 − 1) ≡ 0 (mod s2 − 1),

as desired.

Combining Facts 2.1 and 2.2, we find that the sequence d1, d2, d3 . . . is eventually periodic
with period 2, starting at the first value less than s2. From Fact 2.3, it follows that

k′′ ≡ sk′ ≡ s2k ≡ k (mod s2 − 1)

and hence the sequence is periodic modulo s2 − 1 from the start with period 2.

Now, if the sequence contains 1, the sequence eventually alternates between 1 and s since
the twist of 1 is s and vice versa. Using periodicity modulo s2 − 1, we must have n ≡ 1, s
(mod s2 − 1). Conversely, if n ≡ 1, s (mod s2 − 1) then the eventual period must contain
at least one value congruent to either 1 or s modulo s2 −1. Since these values must be less
than s2, this implies that the sequence eventually alternates between 1 and s, showing
that it contains a 1.

Solution 3. We give an alternate proof of the direct implication: if the sequence contains
a 1, then the first term is 1 or s modulo s2 − 1. We prove the following fact, which is a
combination of Facts 2.1 and 2.3.

Fact 3.1. For all k ≥ s2, we have (k − s2 + 1)′ ∈ {k′, k′ − s2 + 1}.

Proof. We write k = as + b, as in the problem statement. Since k ≥ s2, we have a ≥ s.
If b < s − 1, then

(k − s2 + 1)′ =
(

(a − s)s + (b + 1)
)′

= (b + 1)s + (a − s) = bs + a = k′.

On the other hand, if b = s − 1, then

(k − s2 + 1)′ =
(

(a − s + 1)s + 0
)′

= 0s + (a − s + 1) = a − s + 1 = k′ − s2 + 1.

Now assume n ≥ s2 and the sequence d1, d2, . . . contains a 1. Denote by e1, e2, . . . the
sequence constructed as in the problem statement, but with initial value e1 = n − s2 + 1.
Using the above fact, we deduce that ei ≡ di (mod s2 − 1) and ei ≤ di for all i ≥ 1 by
induction on i. Hence, the sequence e1, e2, . . . also contains a 1.

Since the conclusion we are trying to reach only depends on the residue of d1 modulo
s2 − 1, we conclude that without loss of generality we can assume n < s2.
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Using Fact 2.2, it now follows that the sequence d1, d2, . . . is periodic with period two.
Since 1 and s are twists of each other, it follows that if this sequence contains a 1, it must
be alternating between 1 and s. Hence, d1 ≡ 1, s (mod s2 − 1) as desired.

For the other direction we can make a similar argument, observing that the second of the
two cases in the proof of Fact 3.1 can only apply to finitely many terms of the sequence
d1, d2, d3, . . . , allowing us to also go the other way.

Solution 4. First assume that dk = 1 for some k. Let k be the smallest such index. If
k = 1 then n = 1, so we may assume k ⩾ 2.

Then dk−1 = as + b for some non-negative integers a, b satisfying b < s and bs + a = 1.
The only solution is b = 0, a = 1, so dk−1 = s. So, if k = 2, then n = s, so we may assume
k ⩾ 3.

Then there exist non-negative integers c, d satisfying dk−2 = cs + d, d < s and ds + c = s.
We have two solutions: d = 0, c = s and d = 1, c = 0. However, in the second case we
get dk−2 = 1, which contradicts the minimality of k. Hence, dk−2 = s2. If k = 3, then
n = d1 = s2, which gives remainder 1 when divided by s2 − 1.

Assume now that k ⩾ 4. We will show that for each m ∈ {3, 4, . . . , k − 1} there exist
b1, b2, . . . , bm−2 ∈ {0, 1, . . . , s − 1} such that

dk−m = sm −
m−2∑
i=1

bi

(
sm−i − sm−i−2

)
. (9)

We will prove this equality by induction on m. If m = 3, then dk−3 = a1s + b1 for some
non-negative integers a1, b1 satisfying b1 < s and b1s+a1 = dk−2 = s2. Then a1 = s2 −b1s,
so dk−3 = s3 − b1(s2 − 1), which proves (9) for m = 3.

Assume that (9) holds for some m and consider dk−(m+1). There exist non-negative integers
am−1, bm−1 such that dk−(m+1) = am−1s+bm−1, bm−1 < s and dk−m = bm−1s+am−1. Using
the inductive assumption we get

am−1 = dk−m − bm−1s = sm −
m−2∑
i=1

bi

(
sm−i − sm−i−2

)
− bm−1s,

therefore

dk−(m+1) =am−1s + bm−1 = sm+1 −
m−2∑
i=1

bi

(
sm−i − sm−i−2

)
s − bm−1s

2 + bm−1

=sm+1 −
m−1∑
i=1

bi

(
sm+1−i − sm−i−1

)
,

which completes the proof of (9). In particular, for m = k − 1 we get

d1 = sk−1 −
k−3∑
i=1

bi

(
sk−i−1 − sk−i−3

)
.

The above sum is clearly divisible by s2 − 1, and it is clear that the remainder of sk−1

when divided by s2 − 1 is 1 when k is odd, and s when k is even. It follows that the
remainder when n = d1 is divided by s2 − 1 is either 1 or s.
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To prove the other implication, assume that n gives remainder 1 or s when divided by
s2 − 1. If n ∈ {1, s, s2}, then one of the numbers d1, d2 and d3 is 1. We therefore assume
that n > s2. Since the reminder when a power of s is divided by s2 − 1 is either 1 or s,
there exists a positive integer m such that sm − n is non-negative and divisible by s2 − 1.
By our assumption m ⩾ 3. We also take the smallest such m, so that n > sm−2. The
quotient sm−n

s2−1 is therefore smaller than sm−2, so there exist b1, . . . , bm−2 ∈ {0, 1, . . . , s−1}
such that sm−n

s2−1 = ∑m−2
i=1 bis

i−1. It follows that

n = sm −
m−2∑
i=1

bi

(
si+1 − si−1

)
.

We now show that
dj = sm+1−j −

m−1−j∑
i=1

bi

(
si+1 − si−1

)
(10)

for j = 1, 2, . . . , m − 2 by induction on j. For j = 1 this follows from d1 = n. Assume
now that (10) holds for some j < m − 2. Then

dj =
sm−j −

m−1−j∑
i=2

bi

(
si − si−2

)
− b1s

 s + b1.

As dj is positive and b1 ∈ {0, 1, . . . , s−1}, the expression sm−j −∑m−1−j
i=2 bi (si − si−2)−b1s

has to be non-negative, so we can compute the twist of dj as

dj+1 = b1s + sm−j −
m−1−j∑

i=2
bi

(
si − si−2

)
− b1s = sm−j −

m−2−j∑
i=1

bi

(
si+1 − si−1

)
,

which finishes the induction.

Now we use (10) for j = m − 2 and get dm−2 = s3 − b1(s2 − 1) = (s2 − b1s) + b1. Then
dm−1 = b1s+s2−b1s = s2 = s·s+0, dm = 0·s+s = s = 1·s+0 and dm+1 = 0·s+1 = 1.
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Problem 6. Let ABC be a triangle with circumcircle Ω. Let Sb and Sc respectively
denote the midpoints of the arcs AC and AB that do not contain the third vertex. Let
Na denote the midpoint of arc BAC (the arc BC containing A). Let I be the incentre of
ABC. Let ωb be the circle that is tangent to AB and internally tangent to Ω at Sb, and
let ωc be the circle that is tangent to AC and internally tangent to Ω at Sc. Show that
the line INa, and the line through the intersections of ωb and ωc, meet on Ω.

The incentre of a triangle is the centre of its incircle, the circle inside the triangle that is
tangent to all three sides.

Ω

Sc

Sb

M

T

A B

C

U

V

ωc

ωb

I
Na

X
Pc

Pb

Y

Figure 6: Diagram to Solution 1

Solution 1. Part I: First we show that A lies on the radical axis of ωb and ωc.

We first note that the line through the intersections of two circles is the radical line of the
two circles. Let the tangents to Ω at Sb and Sc intersect at T . Clearly T is on the radical
axis of ωb and ωc (and in fact is the radical centre of ωb, ωc and Ω).

We next show that A lies on the radical axis of ωb and ωc. Let Pb denote the point of tan-
gency of ωb and AB, and let Pc denote the point of tangency of ωc and AC. Furthermore,
let U be the intersection of the tangent to Ω at Sb with the line AB, and let V be the
intersection of the tangent to Ω at Sc with the line AC. Then TV AU is parallelogram.
Morover, due to equality of tangent segments we have |USb| = |UPb|, |V Pc| = |V Sc| and
|TSb| = |TSc|. It follows that

|APb| = |UPb| − |UA| = |USb| − |TV | = |TSb| − |TU | − |TV | (11)
= |TSs| − |TV | − |TU | = |V Sc| − |AV | = |V Pc| − |V A| = |APc|.
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But |APb|, |APc| are exactly the square roots of powers of A with respect to ωb and ωc,
hence A is indeed on their radical axis.

Thus, the radical axis of ωb, ωc is AT .

Part II: Consider the triangle ASbSc. Note that since T is the intersection of the tangents
at Sb and Sc to the circumcircle of ASbSc, it follows that AT is the symmedian of A in
this triangle. Let X denote the second intersection of the symmedian AT with Ω. We
wish to show that X is also on INa.

Note that ANa is the external angle bisector of angle A, and therefore it is parallel to
SbSc. Let M denote the midpoint of SbSc, and let Y be the second intersection of AM
with Ω. Since in ASbSc, AXT is the symmedian and AMY is the median, it follows that
XY is also parallel to SbSc. Thus, reflecting in the perpendicular bisector of SbSc sends
the line AMY to line NaMX.

Next, consider the quadrilateral ASbISc. From the trillium theorem we have |SbA| = |SbI|
and |ScA| = |ScI|, thus the quadrilateral is a kite, from which it follows that the reflection
of the line AM in SbSc is the line IM . But previously we have seen that this is also the
line NaMX. Thus M, I, Na and X are collinear, as we wanted to show.

Solution 2. This is a variation of Solution 1 which avoids the theory of the symmedian
point.

We begin by showing that the radical axis of ωb, ωc is AT as in Solution 1.

Part II: We introduce the point Sa with the obvious meaning. Observe that the incentre
I of ABC is the orthocentre of SaSbSc either because this is well-known, or because of
an angle argument that A reflects in SbSc to I (and similar results by cyclic change of
letters). Therefore ASa is perpendicular to SbSc.

AA

BB

CC

SScc

SSbb

NNaa

SSaa

II

XX

MM

YY

TT

Figure 7: A reflections argument for Solution 2

Let M denote the midpoint of SbSc. Then A is the reflection of Sa in the diameter parallel
to SbSc, so the reflection of A in the diameter perpendicular to SbSc is Na, the antipode
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of Sa. Let the reflection of X in TM be Y , so TY passes through Na and is the reflection
of TX in TM .

Now SbSc is the polar line of T with respect to Ω, so AY and NaX meet on this line, and
by symmetry at its midpoint M . The line NaMX is therefore the reflection of the line
Y MA in SbSc, and so NaMX passes through I (the reflection of A in SbSc).

The triangle AScSb can be taken as generic, and from the argument above we can extract
the fact that the symmedian point and the centroid are isogonal conjugates in that triangle.

Solution 3. Assume the notation from Solution 1, part I of Solution 1, and let O be the
centre of Ω.

O

Ω

Sc

Sb

M

T

A B

C

ωc

ωb

I
Na

X
Pc

Pb

Figure 8: Diagram to Solution 3

Part II: As in Solution 1, by the trillelium theorem, ScSb bisects AI, and since NaA ∥ SbSc,
then OT is a bisector of ANa. This implies |MNa| = |MA| = |MI|, since M is the
midpoint of ScSb and lies also on OT . Hence, M is the circumcentre of triangle IANa.
But this triangle has a right angle at A (since AI and ANa are the inner and outer angle
bisector at A), hence M lies on INa.

Again, let X be the second intersection of TA and Ω. By the above, it suffices to prove
that X lies on the line NaM . From the power of point T with respect to Ω we get
|TA| · |TX| = |TSc|2. Since M is the foot of the altitude of right triangle TScO, we obtain

25



EGMO 2023, Portorož Problems & Solutions

|TSc|2 = |TM | · |TO|. Hence, |TA| · |TX| = |TM | · |TO| so the points O, M, A, X are
concyclic. It follows that ∠MXA = ∠MOA = 1

2∠NaOA = ∠NaXA. Hence, X lies on
the line NaM .

Remark. To show that OMAX is cyclic, one can also invert the line TAX in the
circumcircle of the triangle ABC.

Solution 4. Part I is done as in solution 1.

O

Ω

Sc

Sb

T

A B

C

ωc

ωb

I
Na

Sa

Q
Pc

Pb

Figure 9: Diagram to Solution 4

Part II: as in Solution 1 we show that ANa||SbSc. In particular, ∠NaOT = ∠TOA. The
conclusion of the problem trivially holds if |AB| = |AC|, therefore we assume without
loss of generality that |AC| > |AB|. Let Sa be the midpoint of the arc BC which does
not contain A. Then NaSa is a diameter, so ∠SaBNa = π

2 = ∠OScT . We also compute
∠BNaSa = ∠BASa = 1

2∠BAC = 1
2∠ScTSb = ∠ScTO. It follows that the triangles TScO

and NaBSa are similar. In particular,

|NaB|
|TSc|

= |SaB|
|OSc|

. (12)

Next we compute

∠ISaB = ∠NaSaB −∠NaSaI = ∠TOSc − 1
2∠NaOA = ∠TOSc −∠TOA = ∠AOSc (13)
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and

∠IBNa = ∠CBNa−∠CBI = 1
2(π−∠BNaC)−1

2∠CBA = 1
2∠ACB = ∠ACSc = ∠AScT,

(14)
hence

∠SaBI = π

2 − ∠IBNa = π

2 − ∠AScT = ∠OScA.

Together with (13) it follows that the triangles IBSa and AScO are similar, so |SaB|
|OSc| =

|IB|
|ASc| , and (12) implies |NaB|

|T Sc| = |IB|
|ASc| . Consequently, by (14) the triangles TScA and NaBI

are similar and therefore ∠ScTA = ∠BNaI. Now let Q be the second intersection of NaI
with Ω. Then ∠BNaI = ∠BNaQ = ∠BAQ, so ∠ScTA = ∠BAQ. Since AB is parallel
to TSc, we get AQ||TA, i.e. A, T , Q are collinear.

Remark. After proving similarity of triangles TScO and NaBSa one can use spiral
symmetry to show similarity of triangles TScA and NaBI.

Solution 5. Part I: First we show that A lies on the radical axis between ωb and ωc.

Let T be the radical center of the circumcircle, ωb and ωc; then TSb and TSc are common
tangents of the circles, as shown in Figure 5a. Moreover, let Pb = AB ∩ SbSc and Pc =
AC ∩ SbSc. The triangle TScSb is isosceles: AB ∥ TSc and AC ∥ TSb so

∠APbPc = ∠TScSb = ∠ScSbT = ∠PbPcA.

From these angles we can see that ωb passes through Pb, ωc passes through Pc, and finally
APb and APc are equal tangents to ωb and ωc, so A lies on the radical axis.

Figure 5a Figure 5b
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Part II. Let the radical axis TA meet the circumcircle again at X, let Sa be the midpoint
of the arc BC opposite to A, and let XI meet the circumcirlce again at N . (See Figure 2.)
For solving the problem, we have prove that Na = N .

The triples of points A, I, Sa; B, I, Sb and C, I, Sc are collinear because they lie on the
angle bisectors of the triangle ABC.

Notice that the quadrilateral AScXSb is harmonic, because the tangents at Sb and Sc,
and the line AX are concurrent at T . This quadrilateral can be projected (or inverted) to
the quadrilateral SaCNB through I. So, SaCNB also is a harmonic quadrilateral. Due
to SaB = SaC, this implies NB = NC, so N = Na. Done.

Remark. Instead of mentioning inversion and harmonic quadrilaterals, from the similar
triangles △TScA ∼ △TXSc and △TASb ∼ △TSbX we can get

ASc

ScX
= ASb

SbX
.

Then, we can apply the trigonometric form of Ceva’s theorem to triangle BCX

sin∠BXNa

sin∠NaXC
· sin∠CBSb

sin∠SbBX
· sin∠XCSc

sin∠ScCB
= BNa

NaC
· −CSb

SbX
· XSc

−ScB
= 1 · SbA

SbNa

· NaSc

ScB
= 1,

so the Cevians BSb, CSc and XNa are concurrent.

Solution 6. Part I: First let’s show that this is equivalent to proving that TA and NaI
intersect in Ω.

Lemma: Let’s recall that if we have two circles ω1 and ω2 which are internally tangent at
point X and if we have a line AB tangent to ω2 at Y . Let M be the midpoint of the arc
AB not containing Z. We have that Z, Y, M are collinear.

Solution 6: Lemma

Let Pb = AB ∩ ωb and Pc = AC ∩ ωc. We can notice by the lemma that Sb, Pb and Sc are
collinear, and similarly Sc, Pc and Sb are also collinear. Therefore Sc, Pb, Pc, and Sb are
collinear, and since ∠APbPc = ∠ABC

2 + ∠ACB
2 = ∠APcPb then APb = APc so A is on the

radical axis of ωb and ωc. Let T be the intersection of the tangent lines of Ω through Sc

and Sb. Since TSc = TSb then AT is the radical axis between ωb and ωc.

Part II: TA and NaI intersect in Ω.
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Let ωa the A-mixtilinear incircle (that is, the circle internally tangent to Ω, and tangent
to both AB and AC), and let X = Ω ∩ ωa. It is known that Na, I, X are collinear.

Let Mc and Mb be the tangent points of ωA to AB and AC respectively, then by the
lemma X, Mc, Sc are collinear and X, Mb, Sb are collinear. We can see that ScTSb and
McAMb are homothetic with respect to X; therefore T and A are homothetic with respect
to X, impying that T, A, X are collinear.

Figure 10: Diagram to Solution 6
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